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Selenium isotope evidence for progressive
oxidation of the Neoproterozoic biosphere
Philip A.E. Pogge von Strandmann1,2, Eva E. Stüeken3, Tim Elliott2, Simon W. Poulton4, Carol M. Dehler5,

Don E. Canfield6 & David C. Catling2,3

Neoproterozoic (1,000–542 Myr ago) Earth experienced profound environmental change,

including ‘snowball’ glaciations, oxygenation and the appearance of animals. However, an

integrated understanding of these events remains elusive, partly because proxies that track

subtle oceanic or atmospheric redox trends are lacking. Here we utilize selenium (Se)

isotopes as a tracer of Earth redox conditions. We find temporal trends towards lower

d82/76Se values in shales before and after all Neoproterozoic glaciations, which we interpret

as incomplete reduction of Se oxyanions. Trends suggest that deep-ocean Se oxyanion

concentrations increased because of progressive atmospheric and deep-ocean oxidation.

Immediately after the Marinoan glaciation, higher d82/76Se values superpose the general

decline. This may indicate less oxic conditions with lower availability of oxyanions or

increased bioproductivity along continental margins that captured heavy seawater d82/76Se

into buried organics. Overall, increased ocean oxidation and atmospheric O2 extended over at

least 100 million years, setting the stage for early animal evolution.

DOI: 10.1038/ncomms10157 OPEN

1 Institute of Earth and Planetary Sciences, University College London and Birkbeck, University of London, Gower Street, London WC1E 6BT, UK. 2 Bristol
Isotope Group, School of Earth Sciences, Bristol University, Wills Memorial Building, Queen’s Road, Bristol BS8 1RJ, UK. 3 Department of Earth and Space
Sciences, University of Washington, Seattle, Washington 98195, USA. 4 School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK.
5 Department of Geology, Utah State University, Logan, Utah 84322, USA. 6 NordCEE, University of Southern Denmark, 5230 Odense M, Denmark.
Correspondence and requests for materials should be addressed to P.A.E.P.v.S. (email: p.strandmann@ucl.ac.uk).

NATURE COMMUNICATIONS | 6:10157 | DOI: 10.1038/ncomms10157 | www.nature.com/naturecommunications 1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Birkbeck Institutional Research Online

https://core.ac.uk/display/42135247?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:p.strandmann@ucl.ac.uk
http://www.nature.com/naturecommunications


T
he history of atmospheric and oceanic redox is strongly
interrelated with controls on biological evolution. One of
the most significant changes in redox conditions occurred

during the late Neoproterozoic Era1, alongside low-latitude
‘Snowball Earth’ glaciations and the emergence of metazoans2.
The surface ocean is generally considered to have been
oxygenated long before the first Neoproterozoic glaciation, the
Sturtian, occurring B716 Myr ago1,3,4. However, deeper
waters remained anoxic and ferruginous (Fe2þ containing)
for much of the Neoproterozoic, with fully oxic conditions
becoming widespread (but not global) after the Gaskiers
glaciation at B580 Myr ago5. Extensive deep-ocean oxygenation
in the aftermath of the Gaskiers glaciation may have been a
consequence of a rise in atmospheric oxygen driven by an
influx of nutrients to the ocean during glacial melting6.
Oxygenation may then have permitted the emergence of animal
motility leading to predation and bioturbation, as well as
biomineralization1. A possible rise in atmospheric oxygen at
this time is supported by chromium isotope systematics during
the later Neoproterozoic7,8, while an increased range in sulphur
isotope compositions of biogenic pyrite has been interpreted to
reflect increased atmospheric oxygen penetration into nearshore
sediments9,10. Critically, however, proxies that can temporally
resolve the progressive oxidation of the late Neoproterozoic and
early Cambrian ocean are lacking, as existing proxies often
require specific depositional conditions, or are only applicable to
tracking more extreme redox changes such as identifying fully
anoxic or oxic conditions.

Selenium (Se) isotopes in marine shales are a novel tracer of
ocean and atmospheric oxygenation across the Neoproterozoic
Oxygenation Event11–14. Selenium has four oxidation states: þ 6,
þ 4, 0 and � 2, and although the biogeochemical Se cycle shares
similarities with that of sulphur, there are distinct differences,
including redox transitions. Se oxyanion reduction (both SeVI and
SeIV) occurs at significantly higher Eh than the reduction of
sulphate to sulphide15, and is closer to that of Fe3þ to Fe2þ

(Fig. 1). The combination of multiple redox states, high redox
potential and relatively low abundance may also make Se highly
sensitive to redox changes16. This sensitivity and associated
fractionation mechanisms mean that Se isotopes should have
responded to the oxygenation of the deep ocean in the
Neoproterozoic when the extent of euxinic and ferruginous
water masses contracted significantly5.

In the modern surface ocean, Se exists as selenite (SeIV) or
selenate (SeVI) anions (collectively denoted SeOx

2� ) and dis-

solved organic Se (denoted Seorg). These species have different
behaviour and fates depending on the oxygen levels in the water
column. Selenium oxyanions have a short, nutrient-like beha-
viour and residence time (1,100–9,400 years, although a recent
estimate suggests 26,000 years during the Phanerozoic)15,17,18.
Organic selenium is common and generally dominates15,19 in
surface waters, but is reoxidized at depth in oxic water columns
(Fig. 2a) and has very low concentrations below the modern
photic zone20. In modern anoxic water columns, in contrast, the
remineralization of organic matter is limited, so that Seorg

dominates below the chemocline16,20. The sedimentary archive
consists of organic and reduced Se, where the former dominates
in sediments deposited in anoxic environments16.

About 85% of the input flux of Se to the oceans (Fig. 2b) arises
from rivers, through a combination of organic-bound Se16 and
oxidative weathering of continental selenides to SeOx

2� ; almost
all the rest comes from subaerial volcanism via rainfall.
Hydrothermal fluid input is small (o1% (ref. 16)), and in any
case its Se is probably scavenged by minerals close to the
vent21,22. It has also been suggested that hydrothermal fluxes were
insignificant in the Archaean and earlier Proterozoic13,16.

Here we reconstruct redox across the second oxygen rise, using
marine shale Se isotope ratios. These are novel tracers of oceanic
redox conditions, where lighter isotope ratios in shales are
generally indicative of a large pool of oxyanions, implying
more oxic conditions. There is an overall trend towards
lighter isotope ratios from before the Sturtian glaciation to the
Ediacaran–Cambrian boundary. Where time periods are covered
by data from more than one sample suite, it suggests that the
sediment Se isotopes reflect global redox changes. Therefore, we
suggest that the global ocean became more oxic from at least the
end of the Marinoan glaciation, and that, rather than a sudden
redox change, the shift towards deep-ocean oxia was spread over
a timescale of B100 Myr ago.

Results
Samples. We report Se isotope ratios and Se concentrations for
marine shales from seven different geological sections that
together span from 770 to 525 Myr ago. Sample suites include
the Mackenzie Mountains, Canada (the Twitya and Sheepbed
formations), the Yangtze Platform (comprising samples from the
Doushantuo, Luichapo and Niutitang formations), Tapley Hill,
Australia and finally from the Mineral Fork Formation, and Uinta
Mountain and Chuar groups, western USA.
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Figure 1 | Redox speciation diagrams. Redox speciation of sulphur, selenium and iron. The black boxes show the range of Eh our Se isotope data suggest

oceanic redox must have passed through during the interval 770–525 Myr ago ago65. The pH range also represents the oceanic conditions envisaged for

this time interval66.
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Both formations from Canada are a part of the Windermere
Supergroup. The Twitya Formation represents continental slope
deposition on a passive margin, where water depths may have
reached B1 km (ref. 23). In contrast, the Sheepbed Formation
was deposited in a deep-water outer shelf setting23. Both
Formations contain assemblages of spheromorphic acritarchs,
as well as Ediacara-type fossils. The Yangtze Platform, China,
comprises several formations according to the nomenclature of
ref. 5 (Niutitang, Doushantuo and Liuchanpo). They are thought
to represent deposition on the lower continental slope to deep
basin of a passive margin setting24,25. The Tapley Hill Formation
is from the Adelaide Rift Complex, Australia. It was deposited in

a relatively shallow epicontinental basin of about 200–300 km
width, with apparent access to the global ocean26.

Four members of the Chuar Group (Grand Canyon, USA)
were analysed, including samples from the Walcott Member
(742 Myr ago27), the Awatubi Member (B745 Myr ago upper,
750 Myr ago lower28), the Carbon Canyon Member (B755 Myr
ago) and the Jupiter Member (760 Myr ago28). The group was
deposited in an intracratonic extensional basin between B740
and 780 Myr ago29. The depositional setting was marine to
marginal marine, with access to the open ocean during
transgressions, recorded by both sedimentological (wave and
tide influenced deposition) and palaeontological evidence30.
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Figure 2 | Summary of selenium and selenium isotope cycling in seawater. (a) (i) Modern cycling of Se in seawater, following Cutter and Bruland47.

Underlines indicate relative concentrations in surface and deep water. Reduction of Se and incorporation into phases in sediments can impart negative

isotope fractionation. (ii) Possible cycling of Se in Proterozoic seawater when the deep ocean was not oxygenated and had little SeOx
2� . Reduction of Se

from oxyanions would have been very limited. (b) A simplified diagram showing the main inputs and outputs in the geological selenium cycle16 (analogous

to a very similar global scheme developed for isotopes of Mo, which is also a chalcophile element67). The main inputs to the ocean are volcanic and

weathering fluxes with d82/76Se values of dvolc and dweath, respectively22. A key output (highlighted in red) is the largely quantitative removal in isolated

euxinic basins, which captures the bulk d82/76Se value in seawater, dseawater. Another key output, which we sample in our measurements, is removal of Se

into sediments on slope or shelf environments in two key components that are mixed in the sediments with Se isotopic composition, dsed
11,12,15,22,49. The

first form is organically bound selenium (Seorg), which likely captures seawater isotopic composition, dseawater. The second form is selenide (Se2� ) or

elemental selenium (Se0) produced from the microbial reduction of seawater selenite or selenate (SeOx
2� ). Because of isotopic fractionation, this second

component tends to sequester lighter selenium isotopes. In the above diagram, we ignore small oceanic Se inputs from deep-sea hydrothermal sources and

their outputs in the deep sea, because this Se does not mix into the oceans21. Cycling of Se from ocean to atmosphere and back via volatile biogenic organic

selenides also does not cause isotope fractionation.
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Samples from three different Formations of the Uinta
Mountain Group (Utah, USA) were also analysed. The group
correlates with the Chuar Group, using sedimentological,
geochemical, palaeontological and geochronological data31. The
Uinta Mountain Group was deposited in an intracratonic
extensional basin during the early stages of the breakup of
Rodinia31. The quartzose shale of the Red Pine Shale (sample age
740 Myr ago, based on correlation with the Chuar Group)
indicates a prodelta marine environment31. The sample from the
Moosehorn Lake formation (sample age 765 Myr ago, based on
correlation with eastern Uinta Mountain Group formation of
Outlaw Trail31) represents a marine setting, which was connected
to the open ocean. Finally, the Deadhorse formation (B760 Myr
ago, stratigraphically above the Moosehorn Lake Formation)
represents a barrier bar environment, and as such can be
considered to be marine, albeit nearshore31.

Finally, a single sample from the Mineral Fork formation was
analysed. Zircons in this Formation have been dated at
B700 Myr ago, and other detrital zircon peaks in correlative
successions are dated at 700–680 Myr ago32. Hence, while using
the earlier dates of the Sturtian onset from ref. 4 (based partly on
Twitya) of B717 Myr ago, the maximum depositional age of the
Mineral Fork (B700 Myr ago) suggests a later glacial effect
further south32.

Sample chronology is taken from several studies5,31,32. In
general, these are based on correlation between absolute ages of
individual dated layers. The sample dates between the Sturtian
and Marinoan have been adjusted to the new timing of the
Sturtian4, by maintaining the relative timing from ref. 5, and
condensing the absolute ages.

Shale Se isotope record. Selenium concentrations in our sample
shales vary widely (0.02–39.5 mg g� 1), with some correlation
between [Se] and TOC (total organic carbon; Table 1; Fig. 3). This
suggests that some sedimentary Se was buried bound to organic
matter, as expected12,33. There is also a generally positive, but
poor (r2¼ 0.2) relationship between [Se] and the proportion of
highly reactive Fe bound in pyrite, suggesting a weaker effect of
substitution for S in pyrite. However, none of these parameters
correlate with Se isotope ratios (Fig. 4), showing that d82/76Se are
controlled differently from Se concentrations, which again is
anticipated for Se behaviour and may reflect changing reservoir
effects over time or between basins12,16.

The measured range of our Neoproterozoic samples (� 2.35 to
þ 3.63%, where the Se isotope ratio is reported relative to
NIST-3149 (refs 34–36); Fig. 5; Table 1) is generally similar to
the full range of unaltered Phanerozoic and Archaean
shale11–14,16,22,37–39, which might be expected if the data reflect
a transitional interval from relatively low to higher oxygen levels.
Indeed, the data show an overall decrease in d82/76Se with time,
from the highest values in pre-Sturtian sediments, through to the
lowest values at the Precambrian–Cambrian boundary
(B550 Myr ago). In detail, the data become isotopically lighter
in the run-up to each of the three glaciations, but after the
Marinoan glaciation, d82/76Se is reset at higher values. This return
to higher d82/76Se is not apparent after the Gaskiers glaciation,
but an excursion to moderately heavier values occurs during an
euxinic interval in the early Cambrian Yangtze Basin. Where
samples from two different basins overlap in age (that is,
pre-Sturtian, immediately post-Sturtian and between the
Marinoan and Gaskiers at 625–584 Myr ago, Fig. 5), we find a
remarkable consistency of d82/76Se values, which may suggest that
our data represent global processes rather than local redox
changes or diagenetic alteration. It has been proposed that Se
isotopes can become highly fractionated during modern oxidative

weathering of exposed, very Se-rich (r26 wt%), outcrops38,
where it appears that Se was oxidized and then re-reduced during
aqueous transport. However, other studies of Se poorer soils have
reported much less fractionation (o0.5%)40, and the studies of
large global data sets also suggest that isotopic effects of late-stage
weathering of outcrops are probably not significant12,16.
The highly fractionated values from the Se-rich soil38 may thus
not be representative of all exposed surface environments. In
any case, we present Se data from a combination of cores and
outcrops5,31,32, and from different global localities, the
combination of which should guard against significant late-
stage diagenetic and weathering effects. In addition, for outcrop
material, all weathered edges were cut away, and these samples
often contain significant pyrite and Fe carbonate minerals
suggesting minimal oxidation5, as confirmed by conventional
and cathodoluminescence petrographic techniques41. Iron
speciation data suggest that most of this study’s samples were
ferruginous, albeit with some euxinic conditions at the
Precambrian–Cambrian boundary (Table 1)5,42.

Discussion
The Se isotopic composition of volcanically derived Se is likely to
be similar to that of the mantle (d82/76Se B0–0.25% (refs 16,43)).
During oxidative weathering, relatively small fractionations of
B0–0.4% occur40. However, during dissimilatory or abiotic
oxyanion reduction in some modern and ancient lakes and rivers,
isotopically light Se is sequestered in sediments, driving surface
waters heavy by over 3% (refs 16,44). Overall, modern ocean
inputs are probably close to B0% on average, but may have
differed in the past. Significant positive values in marine
sediments from most of the earlier Precambrian may indicate
that fluvial Se was isotopically heavy due to partial reduction
during transport16. Marine plankton are thought to assimilate
Se without fractionation and the isotopic composition
of þ 0.42±0.22% in modern phytoplankton12 suggests that
pre-industrial seawater SeOx

2� may have had d82/76Se Bþ 0.4%
(refs 12,16,22). This elevated isotope ratio compared with the
likely input must be balanced by accumulation of selenium with
lower d82/76Se in average marine sediments12.

Selenium can be preserved in sediments in three different
forms. On a global scale, most modern selenium is biologically
reduced by assimilation and deposited as Seorg, with little
inherent isotope fractionation (o0.9%)15,16,44,45. Another
component of sedimentary Se may be SeIV adsorbed onto
Fe-oxyhydroxides. This process also imparts a relatively small
isotope fractionation of on average B0.15% (refs 45,46). The
third component comprises inorganic reduced phases (Se0 and
Se� II in sulphide minerals) that form via microbial
dissimilatory reduction under suboxic conditions. Given that a
significant fraction of the sedimentary Se is associated with
organic matter47,48, any potential inorganic Se� II or Se0 phases
that formed by oxyanion reduction and may carry more
negative d82/76Se values become diluted16. This may explain
why natural bulk sediments generally show much smaller
fractionations relative to Se sources to the ocean than what is
observed in laboratory experiments16.

Isotopic fractionation of selenium species in sediments is
related to the redox state of the overlying water. Both
experimental11 and ab initio calculations49 have reported
fractionation of D82/76Seoxyanions� SeO r� 21%, although
natural fractionation is considerably smaller12,16. In any case,
ab initio equilibrium calculations likely do not reflect the largely
kinetic fractionation likely occurring in natural systems47,50. The
additional reduction of Se0 to selenide is not associated with
significant isotope fractionation11. Thus, where dissimilatory
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reduction of SeOx
2� occurs, it sequesters lighter isotopes into

sediments. If the site of the reduction (for example, suboxic
sediments or oxygen-minimum zones (OMZs) in the water
column) is linked to a large Se oxyanion reservoir, as, for
example, the modern oxic ocean, then SeOx

2� reduction may be
non-quantitative, such that sedimentary reduced phases preserve
large negative fractionations14,15,39. Therefore, one would expect
that an increase in the size of the dissolved SeOx

2� reservoir
correlates with larger and more negative fractionations in locally
suboxic environments. Selenium isotope compilations from
across geological time statistically support this relationship,

with mean isotope ratios heaviest in the mid-Archaean before
the onset of oxidative weathering around B2.7 Gyr ago
(d82/76Se¼ þ 0.93±0.41%, 1 s.d.; Fig. 6a), intermediate in the
early to middle Proterozoic (þ 0.68±0.83%, up to B1.1 Gyr
ago), and lightest in the Phanerozoic (� 0.30±0.89%)16.
Shorter-term trends in sedimentary Se isotope ratios confirming
the same patterns have been reported from the latest Archaean13,
the Permo–Triassic (P-Tr) boundary39, Mesozoic Oceanic Anoxic
Events (OAEs; although these appear to exhibit basinal
gradations12,16) and glacial–interglacial redox variations in the
Cariaco Basin22.

Table 1 | Se concentration and isotope data for the analysed samples.

Sample Formation Height,
m

Age,
Myr ago

TOC,
%

d34S Se,
lg g� 1

d82/76Se 2 s.d. Redox conditions
(based on Fe speciation)

NO1-T1 Twitya 0 662.0 0.53 35.98 0.17 0.06 0.36 f
rpt 0.16 0.14 0.29
NO1-T2 Twitya 60 659.3 1.18 26.33 0.53 0.89 0.38 f
NO1-T9 Twitya 330 639.1 0.18 20.46 0.02 o-f
NO1-T13 Twitya 460 630.1 0.10 29.67 0.03 o-f
NO1-T16 Twitya 550 623.8 0.18 22.33 0.05 o-f
NO1-T20 Twitya 700 613.4 0.15 27.75 0.08 o-f
N97-34-1 Sheepbed 5 630.0 0.64 � 5.02 0.50 2.41 0.14 f
N97-34-10 Sheepbed 43 625.3 0.72 7.40 0.21 1.18 0.24 f
rpt 0.22 1.11 0.17
N97-34-11 Sheepbed 60 623.2 0.67 16.76 0.15 1.73 0.25 f
rpt 0.16 1.65 0.21
N97-34-12 Sheepbed 70 621.9 0.87 8.89 0.32 1.67 0.21 f
N97-34-15 Sheepbed 146 612.5 0.38 0.14 f
N97-34-17 Sheepbed 240 600.8 0.37 32.67 0.23 �0.31 0.22 f
N97-34-7 Sheepbed 322 590.6 0.47 7.84 0.28 � 1.22 0.29 f
N97-34-20 Sheepbed 375 584.0 0.56 46.60 0.27 �0.71 0.22 f
N97-34-21 Sheepbed 450 574.7 0.32 33.86 0.03 f
N97-34-8 Sheepbed 468 572.5 0.39 30.59 0.14 f
Son 378 Niutitang (Xiaosi member) 117.15 524.8 16.17 0.04 f
Son 377 Niutitang (Xiaosi member) 116.25 525.2 12.20 0.13 � 1.53 0.18 f
Son 367 Niutitang (Xiaosi member) 102.85 529.2 3.31 6.00 0.70 0.39 0.14 f
Son 358 Niutitang 74.12 532.0 8.03 15.90 4.9 �0.50 0.08 f-e
Son 389 Niutitang 52.15 537.0 6.82 0.20 9.3 �0.80 0.05 e
rpt 9.3 �0.89 0.07
Son 384 Niutitang 48.5 539.5 9.64 7.37 39.5 �0.17 0.06 e
Son 326 Liuchapo 42.65 547.0 2.75 10.07 1.7 � 2.29 0.08 f
Son 330 Liuchapo 37.05 551.0 13.51 0.90 15.3 � 2.35 0.07 f
rpt 15.4 � 2.24 0.09 f
Son 310 Doushantuo (Dengying) 26.2 570.0 5.48 0.00 5.5 �0.84 0.11 f
Son 311 Doushantuo (Dengying) 25.1 590.0 10.50 � 1.32 6.5 �0.25 0.12 f
Son 312 Doushantuo 24.1 610.0 12.71 �8.60 6.2 0.08 0.11 f
Son 314 Doushantuo 22.2 620.0 4.41 � 1.24 32.5 0.48 0.08 f
rpt 32.5 0.40 0.11
Scywla 1280 Tapley Hill 1280.3 653.7 0.33 0.35 �0.77 0.21 o-f
Scywla 1,300 Tapley Hill 1,300 655.0 0.32 0.32 0.08 0.23 f
SR6 520.8 Tapley Hill 520.7 649.1 0.21 0.35 �0.59 0.23 f
SR17.2 805 Tapley Hill 805.4 656.2 0.38 0.60 �0.66 0.06 f
SR17.2 815 Tapley Hill 815.3 656.5 0.36 0.60 �0.35 0.16 f
SR17.2 905.5 Tapley Hill 905.5 659.2 0.90 0.27 0.17 0.24 f
SDH10* Mineral Fork 700 0.53 5.57 0.32 0.79 0.26 f
16SL01* Uinta Mt Gp, Deadhorse Fm 760 0.04 14.13 0.31 2.45 0.41 f
MH6-23-08-1* Uinta Mt Gp, Moosehorn Lake Fm 765 0.16 6.49 0.13 3.63 0.00 f
RP01B12* Uinta Mt Gp, Red Pine Fm 740 0.33 9.82 0.28 0.80 0.05 f
CC-16* Chuar Gp, Awatubi Mbr 750 0.14 12.73 0.13 0.56 0.19 f
LCB-28* Chuar Gp, Jupter Mbr 760 0.02 16.08 0.08 2.99 0.52 f
11-53-8* Chuar Gp, Carbon Canyon Mbr 755 1.92 0.10 0.82 2.00 0.05 f
10-60-68* Chuar Gp, Walcott Mbr 742 1.99 2.16 0.68 0.17 f
10-60-20* Chuar Gp, Awatubi Mbr 745 0.69 17.00 0.29 1.20 0.26 f

e, euxinic; f, ferruginous; f–e, ferruginous–euxinic boundary; o–f, oxic–ferruginous boundary60; TOC, total organic carbon.
Additional information from refs 5,31. All Se isotope data analysed by the double-spike method of Pogge von Strandmann et al.35, except those marked by *, where the method is that of Stüeken et al.36.
The final column details the depositional redox conditions, based on Fe speciation5,30,42.
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The interpretation of a link between redox trends and Se
isotopic composition may be complicated by temporal variations
in the compositions of inputs to the oceans (dominantly riverine
fluxes), and by local redox changes in restricted basins or
marginal seas that are not representative of the global ocean. The
former implies that seawater d82/76Se has changed at key intervals
in Earth history, as also suggested for Mo isotopes51,52. The latter
is particularly important for Se due to its short marine residence

time and its high sensitivity to changes in biological
productivity39. Locally enhanced productivity may increase the
relative proportion of Seorg, which would lead to a smaller net
fractionation of bulk sediments relative to seawater, because the
dissolved SeOx

2� reservoir becomes locally depleted and because
Seorg dilutes any fractionation carried by inorganic reduced
phases. Hence, global, rather than local, redox conditions can
only be inferred with confidence if similar trends and values
occur in multiple different settings of similar age. Therefore, as
with all tracers of marine redox conditions (for example,
Mo isotopes53), Se isotopes provide information on local water
column and water-sediment interface conditions, with an
additional control from global seawater isotope ratios.

Published modern (o500 kyr old) data clearly show that
sediments deposited in the oxic open ocean, or under
well-connected OMZs, have isotopically lighter Se than those
deposited in anoxic, restricted basin conditions16,22. The
lighter values probably reflect the large SeOx

2� reservoir in
oxic seawater, which allows for incomplete dissimilatory
reduction under locally suboxic conditions, such as during early
diagenesis in sediments or in OMZs. In contrast, sediments
deposited under anoxic or euxinic conditions incur little to no
isotopic fractionation, likely due to a combination of more
quantitative SeOx

2� reduction, a higher proportion of Seorg, and a
local increase in the isotopic composition of dissolved SeOx

2�

due to Rayleigh distillation16. In ferruginous systems, preferential
removal of isotopically light Se by abiotic reduction with Fe(II)
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may play a role, with experimental results suggesting large
fractionations, although it is unknown whether these experiments
reflect the degree of fractionation in a natural state11,14,16,46,54. It
has been suggested that light Se isotope ratios reported from the
early Cambrian Yangtze platform may be due to this process14,
but in this case the ferruginous reduction site was likely linked to
a large Se oxyanion reservoir such as the global ocean or a deep
oxic surface layer16,46. Overall, over geologic time, marine
sediments have become isotopically lighter, in response to the
overall oxidation of the ocean-atmosphere system (Fig. 6)16. The
trend towards more negative values in our Neoproterozoic d82/
76Se data (Fig. 5) is thus most plausibly interpreted as deep-water
oxygenation and an increase in the marine SeOx

2� reservoir
towards the Precambrian–Cambrian boundary. Excursions from
other time periods (latest Archaean13, P–Tr boundary39,
OAEs12,16 and glacial–interglacial redox variations22) have been
interpreted in a similar manner, lending support to our
Neoproterozoic interpretation.

One key observation is that d82/76Se values before the Sturtian
and immediately after the Marinoan are isotopically heavier than
both the mantle and average Precambrian values (Fig. 5).
The highest Precambrian d82/76Se value published before this
study is þ 3.04% from B2.3 Gyr ago16, compared with our
highest values of þ 3.63% at 0.765 Gyr ago, and positive values
are generally observed in the Archaean16. Highly positive values
are also reported from the first ‘whiff of oxygen’13 and during a
local euxinic event shortly before the Permo–Triassic mass
extinction39.

Several possibilities can be proposed for driving sediment
d82/76Se higher than crust or mantle values in the Precambrian.
The first is that Precambrian rivers became isotopically heavy.
Early rivers could have contained a large fraction of organically
complexed Se, due to land-based microbial life. In this
case, increasing atmospheric oxygen could have increased the
SeOx

2� /Seorg ratio, generating more reduction of SeOx
2� in

rivers, driving the residue to higher d82/76Se values16. This
scenario is reasonable given that late Archaean lake and river
sediments are isotopically lighter than marine sediments from the
same time, indicating heavier continental surface waters16,
assuming a similar fractionation mechanism in fresh and
seawater. This phenomenon has also been reported from
modern lakes with changing redox44. As during the late
Archaean ‘whiff of oxygen’13, the pre-Sturtian d82/76Se peak in
our data set may thus reflect an atmospheric rise in pO2 above
background levels without significant seawater oxygenation. A
second possibility is that a Se isotope gradient with ocean depth
could have formed, where continuous removal of light Se into
sediments in shallower oxic waters would enrich offshore waters
in heavy isotopes, also driving sediments downslope to
isotopically heavier compositions. Such behaviour has been
proposed to explain Archaean Se data13, as well as suggested
for molybdenum isotopes13,53. However, it is only likely to apply
here if the intracratonic basin represented by the Uinta Mountain
and Chuar data had a universally deep chemocline everywhere in
the basin. Hence, the isotopically heavy data might indicate that
rivers became isotopically heavier at these times, likely due to
relatively sudden increases in atmospheric O2 during the run-up
to oceanic oxygenation. In fact, the most positive values
around 770 Myr ago approximately coincide with a large
perturbation in Cr isotopes, which has been interpreted as
evidence of atmospheric oxygenation before the Sturtian
glaciation7. Given that during the Marinoan CO2 levels appear
to have increased55–57, and therefore O2 levels decreased, there
could have been another O2 rise soon after the Marinoan, which
may again have led to isotopically heavy Se in river waters. The
increasing availability of oxygen is also consistent with high
proportions of organic carbon burial in interglacial times58.
Exceptionally high d82/76Se is not observed after the Sturtian, but
this may be because our samples are slightly older relative to
deglaciation, compared with the post-Marinoan samples. A third
possibility for high d82/76Se values is high organic carbon
burial. Enhanced biological productivity along continental
margins could also have directly contributed to the observed
heavy d82/76Se after the Marinoan glaciations, because
such conditions may have locally enhanced the proportion of
Seorg in sediments.

Changing riverine Se isotope ratios are unlikely to have caused
the trend towards isotopically light values observed in our samples,
because there is no plausible mechanism that would drive river
waters isotopically light. The few riverine sediments from the
geologic past that have been measured have significantly lighter
d82/76Se than the crustal value16, implying isotopically heavy
waters. Hence the negative fractionations in marine sediments
are likely the result of in situ SeOx

2� reduction, either within
sedimentary pore waters or in suboxic bottom waters. Importantly,
the preservation of light d82/76Se values relative to the crust implies
that reduction was not quantitative. One possible explanation is a
massive drop in productivity, such as observed during the P–Tr
extinction39, which would lead to a decline in Seorg deposition.
Although carbon burial may indeed have declined after its initial
post-glacial boost58, there is no overall correlation between Se and
C isotopes (Fig. 7). Therefore, the trend towards lighter values is
probably a reflection of an increasing SeOx

2� reservoir in the
Neoproterozoic ocean, that is, an increase in Se supply rather than
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a decrease in demand. The fact that multiple basins of similar age
show similar patterns suggests that dissolved SeOx

2� concentra-
tions increased globally, which is consistent with widespread
oxygenation of the deep ocean.

A key complication in interpreting sedimentary Se isotopes (or
indeed any redox proxy) is the influence of local redox changes in
the water column, relative to global oceanic oxidation changes.
Localized changes in redox (for example, ‘euxinic wedges’) are
thought to have occurred towards the end of the Cryogenian,
especially at intermediate depths5,59,60. Such local changes would
be assumed to complement or override Se isotope variations
caused by global ocean changes, as, for example, also shown for
redox tracers such as Mo and Cr isotopes7,8,53. In addition, the
closer-to-quantitative capture of Se in more reduced settings
would likely decrease the Se residence time before
oxygenation12,16, enhancing local effects. The clearest method
for attempting to determine a local versus global Se isotope signal
is to compare sample suites from different global locations. Thus,
similar d82/76Se values between the data from Chuar and Uinta
Mountain groups between B770 and 742 Myr ago suggest that, at
least in the intracratonic basin associated with these groups, Se
isotope ratios rapidly decreased. Immediately after the Sturtian
(662–659 Myr ago), our Twitya and Tapley Hill samples give
similar d82/76Se values, and at times between the Marinoan and
Gaskiers (B625–584), similar isotope ratios are seen from the
Sheepbed and Yangtze sample suites. Given that these suites are
from different continents and different ocean depths, this
suggests that Se isotope ratios between the Sturtian and
Gaskiers generally represent global ocean phenomena (except,
potentially, high d82/76Se in the Sheepbed samples immediately
after the Marinoan). Combined, these samples nevertheless
suggest that global ocean sediments were becoming isotopically
lighter during the course of the end-Cryogenian and Ediacaran.

Data after the Gaskiers glaciation only exist from the Yangtze
Platform, and, therefore, there is nothing to prove that trends
recorded here are more than local redox changes. However, the
large d82/76Se variation recorded from the Yangtze (from � 2.3%
to þ 0.4%, followed by a return to negative values) provide a
natural experiment that supports our interpretation of a redox
control on d82/76Se. At B540 Myr ago, Fe speciation suggests a
localized, transient, B10 Myr interval of euxinia5. Once euxinia
starts, d82/76Se values increase substantially, and approach B0%,
reflecting near-quantitative removal of Se from seawater
under euxinic conditions, in the form of sulphides and Seorg

(refs 12,13,61). Sections from elsewhere in the Yangtze Basin
display similarly high d82/76Se values14 (Fig. 5). Then, once Fe
speciation indicates a cessation of euxinia, d82/76Se decreases
again. Thus, sediments deposited under more reducing
conditions have significantly higher d82/76Se values than those
deposited under more oxic conditions, as also implied by
rapid12,13,39 and long-term16 oceanic trends.

Selenium’s redox transitions result in Se isotopes being sensitive
to redox conditions between those of S� II–SIV and FeII–FeIII.
Hence, our data imply that at B770 Myr ago, coastal to
intermediate depth (the depositional environment of the Chuar
and Uinta Mt. groups) Eh was below the SeIV–Se0 transition, with
reducing conditions widespread on shallow shelves, coupled
to likely changes in the riverine isotope ratio, in response to
atmospheric oxygenation. Afterwards, temporal trends in d82/76Se
imply that the oceans became progressively oxidized, as evidenced
by deep marine depositional environments from different global
locations showing increasingly lower d82/76Se values. Global
seawater reached a minimum around the Gaskiers glaciation (as
shown by low values in both the Sheepbed and Yangtze), and
potentially a lower minimum at the Precambrian–Cambrian
boundary, although local effects cannot be distinguished here,
because only one location was sampled from this time period. It is
interesting to note that other samples of roughly similar age (also
from the Yangtze Platform14) show even lighter Se isotope ratios
(Fig. 6).

Overall, the Neoproterozoic data from this study fit well into
the trends of Se isotope data over geologic time16 (Fig. 6).
Samples before the Sturtian and after the Marinoan glaciations
are isotopically heavier than the next youngest samples from
B400 to 700 Myr ago earlier16. As discussed above, heavy values
before the Sturtian could be a function of local conditions during
intracratonic basinal deposition, where riverine influence on
shallow waters would be relatively greater, and may not reflect
wider global conditions. Heavy values after the Marinoan are also
only reflected by one sample suite, but could also reflect changing
continental weathering conditions during recovery from the
‘snowball’ glaciation.

Hence, our data appear to capture an important transitional
interval from high d82/76Se values typical of the Archaean and
early Proterozoic12,13,16 to the lighter values that characterise
the Phanerozoic12,14,16,22,35,38,39 (Figs 5 and 6). This shift is
consistent with oxygenation of the deep ocean during this time
period, and in particular, suggests that the shift between fully
ferruginous and fully oxic deep oceans took considerable time.
The possibility that the trend towards lower d82/76Se was caused
by a relaxation in organic burial (and hence less heavy Seorg

burial) is unlikely because there is no correlation between d82/76Se
and d13C (Fig. 7).

The selenium isotope data imply that oxygenation was a
protracted process. Iron speciation indicates that fully oxic deep
waters only formed after the Gaskiers glaciation5. The Se isotope
data suggest that this oxidation was spread over time, likely
starting after the Marinoan, and taking around 100 Myr
to pass through ferruginous and intermediate redox conditions
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(for example, manganous) to reach full deep-ocean oxia.
Selenium’s low abundance, multiple redox states and high
redox potential may make Se isotopes a more sensitive redox
proxy than tracers such as sulphur or molybdenum isotopes16, or
‘on-off’ tracers such as Fe speciation. Hence, these data provide
insight into the small degrees of redox change that led, perhaps in
fits and starts, to full oceanic oxygenation. A Cryogenian–
Ediacaran increase in oxygenation agrees with other redox-
sensitive elements10,62,63 and biomarker evidence64. Thus, the
significance of the Se isotope record is not only that it adds to
growing evidence that the late Proterozoic and Cambrian ocean
and atmosphere reached a progressively more oxic
state, coinciding with the diversification of animal life, but
also that the process of oxidation was protracted, and not
ultimately triggered by the Gaskiers deglaciation, as other data
suggest5.

In summary, this study has determined Se isotope ratios from
shales deposited across the Neoproterozoic Oxygenation Event,
from 770 to 525 Myr ago. Selenium isotopes are sensitive to
changing oceanic redox conditions, both global and local, where
lighter isotope ratios in sediments imply deposition from a water
body that was linked to a large, oxic SeOx

2� reservoir. This
hypothesis is supported by studies of other geologic time periods,
as well as by local redox variations recorded by our post-Gaskiers
samples. Overall, we find a trend of decreasing sediment d82/76Se
with time, and where time periods are covered by data from more
than one sample suite, it suggests that the sediment Se isotopes
reflect global redox changes. Hence, the data suggest that the
global ocean became more oxic from at least the end of the
Marinoan glaciation, and that, rather than a sudden redox
change, the shift towards deep-ocean oxia was spread over a
timescale of B100 Myr.

Methods
Analytical methods. The analytical methods used here for Se isotopes have been
reported elsewhere35,36, but, briefly, two separate methods were used, where both
report relative to NIST SRM-3149 (ref. 34). Samples younger than the Sturtian
glaciation (B670 Myr ago) were analysed by a double-spike inversion method,
where international rock standard results were double-checked using different
spikes and inversions, as well as doping and inverse modelling experiments35. The
chemistry and analyses were performed at the Bristol Isotope Group, UK, using a
Thermo Neptune MC-ICP-MS. Data from before the Sturtian were obtained
using a sample-standard bracketing technique, with analyses performed on a Nu
Instruments MC-ICP-MS at the University of Washington, USA36. To compare
the techniques, the USGS shale standard SGR-1 was analysed by both methods.
The former method yields d82/76Se¼ þ 0.25±0.17% (n¼ 16), and the latter
þ 0.05±0.18% (n¼ 9), meaning that values are identical within analytical
uncertainty35,36.
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