111 research outputs found

    CD4 + T Cells: Differentiation and Functions

    Get PDF
    CD4 + T cells are crucial in achieving a regulated effective immune response to pathogens. Naive CD4 + T cells are activated after interaction with antigen-MHC complex and differentiate into specific subtypes depending mainly on the cytokine milieu of the microenvironment. Besides the classical T-helper 1 and T-helper 2, other subsets have been identified, including T-helper 17, regulatory T cell, follicular helper T cell, and T-helper 9, each with a characteristic cytokine profile. For a particular phenotype to be differentiated, a set of cytokine signaling pathways coupled with activation of lineage-specific transcription factors and epigenetic modifications at appropriate genes are required. The effector functions of these cells are mediated by the cytokines secreted by the differentiated cells. This paper will focus on the cytokine-signaling and the network of transcription factors responsible for the differentiation of naive CD4 + T cells

    Modelling cross-reactivity and memory in the cellular adaptive immune response to influenza infection in the host

    Full text link
    The cellular adaptive immune response plays a key role in resolving influenza infection. Experiments where individuals are successively infected with different strains within a short timeframe provide insight into the underlying viral dynamics and the role of a cross-reactive immune response in resolving an acute infection. We construct a mathematical model of within-host influenza viral dynamics including three possible factors which determine the strength of the cross-reactive cellular adaptive immune response: the initial naive T cell number, the avidity of the interaction between T cells and the epitopes presented by infected cells, and the epitope abundance per infected cell. Our model explains the experimentally observed shortening of a second infection when cross-reactivity is present, and shows that memory in the cellular adaptive immune response is necessary to protect against a second infection.Comment: 35 pages, 12 figure

    Fighting viral infections and virus-driven tumors with cytotoxic CD4+ T cells

    Get PDF
    CD4+ T cells have been and are still largely regarded as the orchestrators of immune responses, being able to differentiate into distinct T helper cell populations based on differentiation signals, transcription factor expression, cytokine secretion, and specific functions. Nonetheless, a growing body of evidence indicates that CD4+ T cells can also exert a direct effector activity, which depends on intrinsic cytotoxic properties acquired and carried out along with the evolution of several pathogenic infections. The relevant role of CD4+ T cell lytic features in the control of such infectious conditions also leads to their exploitation as a new immunotherapeutic approach. This review aims at summarizing currently available data about functional and therapeutic relevance of cytotoxic CD4+ T cells in the context of viral infections and virus-driven tumors

    Immunostimulatory effects of dietary poly-β-hydroxybutyrate in European sea bass post-larvae

    Get PDF
    The stable production of high quality fry in marine aquaculture is still hampered by unpredictable mortality caused by infectious diseases during larval rearing. Consequently, the development of new biocontrol agents is crucial for a viable aquaculture industry. The bacterial energy storage compound poly-β-hydroxybutyrate (PHB) has been shown to exhibit beneficial properties on aquatic organisms such as enhanced survival, growth, disease resistance and a controlling effect on the gastrointestinal microbiota. However, the effect of PHB on the developing immune system of fish larvae has so far not been investigated. In the present study, the effect of feeding PHB-enriched Artemia nauplii on survival, growth and immune response in European sea bass (Dicentrarchus labrax) post-larvae was examined. Amorphous PHB was administered to 28 days old sea bass larvae over a period of 10 days. The survival and growth performance were monitored and the expression of 29 genes involved in immunity, growth, metabolism and stress-response was measured. While the expression of the insulin-like growth factor 1 (igf1), an indicator of relative growth, was upregulated in response to feeding PHB, the larval survival and growth performance remained unaffected. After 10 days of PHB treatment, the expression of the antimicrobial peptides dicentracin (dic) and hepcidin (hep) as well as mhc class IIa and mhc class IIb was elevated in the PHB fed larvae. This indicates that PHB is capable of stimulating the immune system of fish early life stages, which may be the cause of the increased resistance to diseases and robustness observed in previous studies

    The therapeutic potential of epigenetic manipulation during infectious diseases.

    Get PDF
    Epigenetic modifications are increasingly recognized as playing an important role in the pathogenesis of infectious diseases. They represent a critical mechanism regulating transcriptional profiles in the immune system that contributes to the cell-type and stimulus specificity of the transcriptional response. Recent data highlight how epigenetic changes impact macrophage functional responses and polarization, influencing the innate immune system through macrophage tolerance and training. In this review we will explore how post-translational modifications of histone tails influence immune function to specific infectious diseases. We will describe how these may influence outcome, highlighting examples derived from responses to acute bacterial pathogens, models of sepsis, maintenance of viral latency and HIV infection. We will discuss how emerging classes of pharmacological agents, developed for use in oncology and other settings, have been applied to models of infectious diseases and their potential to modulate key aspects of the immune response to bacterial infection and HIV therapy

    F4+ ETEC infection and oral immunization with F4 fimbriae elicits an IL-17-dominated immune response

    Get PDF
    Enterotoxigenic Escherichia coli (ETEC) are an important cause of post-weaning diarrhea (PWD) in piglets. Porcine-specific ETEC strains possess different fimbrial subtypes of which F4 fimbriae are the most frequently associated with ETEC-induced diarrhea in piglets. These F4 fimbriae are potent oral immunogens that induce protective F4-specific IgA antibody secreting cells at intestinal tissues. Recently, T-helper 17 (Th17) cells have been implicated in the protection of the host against extracellular pathogens. However, it remains unknown if Th17 effector responses are needed to clear ETEC infections. In the present study, we aimed to elucidate if ETEC elicits a Th17 response in piglets and if F4 fimbriae trigger a similar response. F4+ ETEC infection upregulated IL-17A, IL-17F, IL-21 and IL-23p19, but not IL-12 and IFN-γ mRNA expression in the systemic and mucosal immune system. Similarly, oral immunization with F4 fimbriae triggered a Th17 signature evidenced by an upregulated mRNA expression of IL-17F, RORγt, IL-23p19 and IL-21 in the peripheral blood mononuclear cells (PBMCs). Intriguingly, IL-17A mRNA levels were unaltered. To further evaluate this difference between systemic and mucosal immune responses, we assayed the cytokine mRNA profile of F4 fimbriae stimulated PBMCs. F4 fimbriae induced IL-17A, IL-17F, IL-22 and IL-23p19, but downregulated IL-17B mRNA expression. Altogether, these data indicate a Th17 dominated response upon oral immunization with F4 fimbriae and F4+ ETEC infection. Our work also highlights that IL-17B and IL-17F participate in the immune response to protect the host against F4+ ETEC infection and could aid in the design of future ETEC vaccines

    Immunity to Cryptococcus neoformans and C. gattii during cryptococcosis

    Get PDF
    The vast majority of infection with cryptococcal species occurs with Cryptococcus neoformans in the severely immunocompromised. A significant exception to this is the infections of those with apparently normal immune systems by Cryptococcus gattii. Susceptibility to cryptococcosis can be broadly categorised as a defect in adaptive immune responses, especially in T cell immunity. However, innate immune cells such as macrophages play a key role and are likely the primary effector cell in the killing and ultimate clearance of cryptococcal infection. In this review we discuss the current state of our understanding of how the immune system responds to cryptococcal infection in health and disease, with reference to the work communicated at the 9th International Conference on Cryptococcus and Cryptococcosis (ICCC9). We have focussed on cell mediated responses, particularly early in infection, but with the aim of presenting a broad overview of our understanding of immunity to cryptococcal infection, highlighting some recent advances and offering some perspectives on future directions

    Phylotranscriptomics suggests the jawed vertebrate ancestor could generate diverse helper and regulatory T cell subsets

    Get PDF
    This study was supported by The Royal Society Research Grant RG130789 awarded to HD, as well as by a University of Aberdeen Centre for Genome-Enabled Biology and Medicine PhD studentship and Marine Alliance for Science and Technology for Scotland (MASTS) research grant SG363 awarded to AKR.Peer reviewedPublisher PD

    CD4+T Cells: Differentiation and Functions

    Get PDF
    CD4+T cells are crucial in achieving a regulated effective immune response to pathogens. Naive CD4+T cells are activated after interaction with antigen-MHC complex and differentiate into specific subtypes depending mainly on the cytokine milieu of the microenvironment. Besides the classical T-helper 1 and T-helper 2, other subsets have been identified, including T-helper 17, regulatory T cell, follicular helper T cell, and T-helper 9, each with a characteristic cytokine profile. For a particular phenotype to be differentiated, a set of cytokine signaling pathways coupled with activation of lineage-specific transcription factors and epigenetic modifications at appropriate genes are required. The effector functions of these cells are mediated by the cytokines secreted by the differentiated cells. This paper will focus on the cytokine-signaling and the network of transcription factors responsible for the differentiation of naive CD4+T cells
    corecore