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F4+ ETEC infection and oral 
immunization with F4 fimbriae elicits an 
IL‑17‑dominated immune response
Yu Luo1*, Ut Van Nguyen1, Pedro Y. de la Fe Rodriguez2, Bert Devriendt1† and Eric Cox1†

Abstract 

Enterotoxigenic Escherichia coli (ETEC) are an important cause of post-weaning diarrhea (PWD) in piglets. Porcine-
specific ETEC strains possess different fimbrial subtypes of which F4 fimbriae are the most frequently associated with 
ETEC-induced diarrhea in piglets. These F4 fimbriae are potent oral immunogens that induce protective F4-specific 
IgA antibody secreting cells at intestinal tissues. Recently, T-helper 17 (Th17) cells have been implicated in the protec-
tion of the host against extracellular pathogens. However, it remains unknown if Th17 effector responses are needed 
to clear ETEC infections. In the present study, we aimed to elucidate if ETEC elicits a Th17 response in piglets and if F4 
fimbriae trigger a similar response. F4+ ETEC infection upregulated IL-17A, IL-17F, IL-21 and IL-23p19, but not IL-12 and 
IFN-γ mRNA expression in the systemic and mucosal immune system. Similarly, oral immunization with F4 fimbriae 
triggered a Th17 signature evidenced by an upregulated mRNA expression of IL-17F, RORγt, IL-23p19 and IL-21 in the 
peripheral blood mononuclear cells (PBMCs). Intriguingly, IL-17A mRNA levels were unaltered. To further evaluate this 
difference between systemic and mucosal immune responses, we assayed the cytokine mRNA profile of F4 fimbriae 
stimulated PBMCs. F4 fimbriae induced IL-17A, IL-17F, IL-22 and IL-23p19, but downregulated IL-17B mRNA expres-
sion. Altogether, these data indicate a Th17 dominated response upon oral immunization with F4 fimbriae and F4+ 
ETEC infection. Our work also highlights that IL-17B and IL-17F participate in the immune response to protect the host 
against F4+ ETEC infection and could aid in the design of future ETEC vaccines.

© 2015 Luo et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided 
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate 
if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/
zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Introduction
In neonatal and recently weaned pigs, ETEC-associated 
diarrhea is a major cause of illness and mortality and 
leads to great economic losses in the swine production 
industry worldwide [1, 2]. ETEC express fimbriae, which 
are long proteinaceous appendages radiating from the 
surface of the bacterium. These fimbriae mediate adhe-
sion to host intestinal epithelia through an interaction 
with specific receptors present on the brush borders of 
the small intestinal enterocytes, enabling bacterial colo-
nization [3]. Porcine-specific ETEC strains possess five 
different fimbrial subtypes, of which F4 fimbriae are the 

most frequently associated with ETEC-induced diarrhea 
in piglets [4–6]. Recent data indicate F4 fimbriae are not 
merely involved in adherence, but also play a role in the 
modulation of the immune system [7, 8]. In addition, 
these F4 fimbriae are potent mucosal immunogens, since 
they elicit a fast secretion of F4-specific secretory IgA 
(SIgA) at the intestinal tissues upon oral administration, 
protecting piglets against a challenge infection [3, 9–11].

SIgA responses can be generated by both T cell-
dependent and T cell-independent pathways [12]. 
Recently, Th17 cells and their production of IL-17A and 
IL-21 have been implicated in the induction of SIgA 
directed against gut-dwelling pathogens [13–15]. This 
ability to trigger SIgA responses explains their critical 
function in the host defense against extracellular patho-
gens such as Candida albicans, Citrobacter rodentium, 
Salmonella typhimurium, Klebsiella pneumonia, and 
Giardia muris [16–20]. Effective immunity to pathogens 
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requires T lymphocytes to be endowed with appropriate 
effector properties. In this context, naive CD4+ T cells 
differentiate into different effector cells and tailor their 
functions to the nature of the microbial threat. Besides 
the classical Th1 and Th2 cells, at least two other CD4+ 
T effector lineages have been identified and described, 
including Th17 and regulatory T cells (Tregs) [21, 22]. 
In humans and mice, Th17 cells can be induced from 
naive CD4+ T cells with IL-6 and/or IL-21 in the com-
bination of TGF-β, and mainly secrete IL-17A, IL-17F 
and IL-21 [23]. IL-17 (also known as IL‑17A) is the hall-
mark cytokine of Th17 cells and is the founding mem-
ber of the IL-17 cytokine family, which consists of six 
members: IL‑17A, IL‑17B, IL‑17C, IL‑17D, IL‑17E (also 
known as IL‑25) and IL‑17F [24], [25]. Among the IL-17 
family members, IL-17F shares the highest sequence 
homology with IL-17A [26]. Although both cytokines 
can bind to the same receptors, regulate inflamma-
tory responses and are involved in mucosal defense, 
they show a distinct binding affinity for these recep-
tors and as such different roles in triggering immunity 
[25]. IL-17E on the other hand triggers Th2 immunity 
and is involved in the clearance of helminths and allergy 
[27, 28]. Recently, IL-17C produced by goblet cells and 
enteroendocrine cells has been proposed to mediate the 
intestinal inflammation in IBD patients [29]. The func-
tion of the other IL-17 cytokines in immunity is still 
poorly understood.

As in humans, porcine Th17 cells arise from naive 
CD4+ lymphocytes via IL-6 in the context of TGF-β and 
secrete IL-17A and IL-21 [30]. However, whether Th17 
cells or IL-17 cytokine family members participate in 
the immune response against an ETEC infection in pigs 
or other species is still unclear. The heat labile toxin (LT) 
from a human ETEC strain was found to enhance IL-
17A production by human PBMCs in response to anti-
gen or mitogen stimulation [31]. Similarly, the IL-17A 
promoting effect of LT was also reported in mice upon 
Helicobacter pylori infection [32]. In pigs, IL-17A mRNA 
production in the small intestine was upregulated early 
during F4+ ETEC infection [33]. In contrast, serum IL-
17A levels were unaltered early during ETEC infection, 
while in the intestinal tissues a downregulated IL-17A 
mRNA production 7  days post infection was observed 
[34]. However, as F4+ ETEC infections are usually cleared 
within 7–8 days, we hypothesized that a potential Th17 
response due to ETEC infection should occur earlier. 
Thus, in the present study, we addressed if an F4+ ETEC 
infection and oral administration with F4 fimbriae could 
skew the T helper cell differentiation to a Th17 profile by 
assessing the mRNA expression profile of key transcrip-
tion factors and cytokines involved in T cell polarization 
at systemic and intestinal tissues.

Materials and methods
The methodology of the animal experiment was approved 
by the Ethical Committee of the Faculty of Veterinary 
Medicine, Ghent University (EC2014/01).

F4+ ETEC challenge
Six F4 receptor-positive (F4R+) piglets (7–8  week-old, 
Belgian Landrace) were selected based on the MUC4 
TaqMan assay as previously described [35]. Upon arrival 
in the animal care facilities, all animals were treated 
orally with colistin (150 000 U/kg of body weight/day; 
Colivet; Prodivet Pharmaceuticals, Eynatten, Belgium) 
until 3 days before inoculation to prevent potential ETEC 
infections due to stress caused by transport and handling 
of the animals. During the whole trial all pigs had access 
to water and feed ad libitum. To reduce the bacterial gut 
flora, the piglets were given orally a broad-spectrum anti-
biotic (2  mL florfenicol (Nuflor; Schering-Plough, Brus-
sels, Belgium) for each pig for two consecutive days. One 
day after Nuflor administration, piglets were inoculated 
with the ETEC reference strain GIS26 (O149:K91:F4ac+, 
LT+STa+STb+) or phosphate buffered saline (PBS) on day 
0 (D0) and day 1 (D1). In brief, piglets were sedated with 
Stressnil (40  mg/mL; Janssen-Cilag, Berchem, Belgium) 
and the gastric pH was neutralized by intragastric admin-
istration of 60 mL NaHCO3 (1.4% in distilled water) fol-
lowed by intragastric administration of 1010 GIS26 in 
10  mL sterile PBS. Faeces were collected at D0 and D1 
and at D2, D3 and D4 post infection to determine F4+ 
ETEC shedding as previously described [9]. The sever-
ity of diarrhea was scored daily as previously described 
[36]. On D4, piglets were euthanized using pentobarbital 
(Kela NV, Belgium) and intestinal tissues were excised. 
Jejunal segments with and without Peyer’s patches, ileal 
segments and mesenteric lymph nodes (MLNs) were 
collected and washed twice with Krebs-Henseleit buffer 
(0.12  M NaCl, 0.014  M KCl, 1  mM KH2PO4, 0.025  M 
NaHCO3, pH 7.4) and once with Krebs-Henseleit buffer 
containing 1% (v/v) formaldehyde. Next, the MLNs and 
intestinal samples were frozen in liquid nitrogen and 
stored at −80 °C until RNA extraction.

Immunohistochemistry
The intestinal tissues were sampled as described above, 
washed with Krebs-Henseleit buffer, embedded in 
methocel (Fluka, Bornem, Belgium), snap-frozen in 
liquid nitrogen and stored at −80  °C until sectioning. 
Cryosections (14 μm) were cut and mounted on 3-ami-
nopropyl-triethoxysilane (Sigma-Aldrich, Bornem, 
Belgium)-coated glass slides. After drying for 30  min 
at room temperature (RT), the slides were fixed in 4% 
paraformaldehyde for 20  min at 4  °C and then embed-
ded in 0.1% Triton (Triton™ X-100, Sigma-Aldrich) for 
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10 min at RT. Slides were washed three times with PBS 
with gentle agitation and then incubated overnight with 
anti-CD3 mAb (0.5  μg/mL, mouse IgG1, clone PPT3) 
and biotinylated anti-swine IL-17A polyclonal rabbit 
antibody (2.5  μg/mL, Kingfisher biotech, St. Paul, MN, 
USA) in PBS at 4  °C in a humidified chamber. Purified 
Mouse IgG1 (0.5  μg/mL, Life Technologies, Carlsbad, 
CA, USA) and irrelevant rabbit polyclonal IgG (2.5 μg/
mL, ab27472, Abcam, Cambridge, UK) were used as 
negative control. The next day, the sections were washed 
and incubated with streptavidin-FITC (2.5  μg/mL, Bio-
legend, London, UK) and Texas Red-X conjugated goat 
anti-mouse IgG (H + L) secondary antibody (5 μg/mL, 
Life Technologies) at RT for 1.5  h. Subsequently, the 
sections were washed in PBS and then the nuclei were 
counterstained with Hoechst (10 μg/mL, Sigma-Aldrich) 
for 15  min at RT. Finally, the slides were mounted in 
glycerol containing 0.223  M 1,4-diazobicyclo-(2,2,2)-
octane (Sigma-Aldrich) and imaged on a Leica TCS SP2 
confocal microscope (Leica Microsystems GmbH).

Isolation of peripheral blood mononuclear cells
Blood was taken on heparin from the jugular vein of pig-
lets on D0 and D1 prior to inoculation and on D2, D3 and 
D4 post infection. PBMCs were isolated by density gradi-
ent centrifugation using Lymphoprep (Axis-shield, Oslo, 
Norway). Erythrocytes were lysed in ammonium chlo-
ride solution. The resulting PBMC fraction was washed 
twice in ice cold PBS + 1 mM EDTA and counted using a 
hemocytometer. The viability was confirmed by exclusion 
of the vital dye Trypan blue. Then, the cells were either 
put in TRIzol Reagent (1  ×  107 cells in 1  mL TRIzol 
Reagent; Life Technologies) for RNA extraction or cul-
tured at a concentration of 5 × 106 cells/mL in leukocyte 
medium (RPMI-1640 (Gibco), fetal bovine serum (FBS) 
(10%) (Gibco), sodium pyruvate (1  mM) (Gibco), l-glu-
tamine (2  mM) (Gibco), penicillin (100  IU/mL), strep-
tomycin (100  μg/mL) (Gibco), and non-essential amino 
acids (1%)) in the absence or the presence of F4 fimbriae 
(5 μg/mL) for up to 72 h at 37 °C, 5% CO2 in a humidified 
atmosphere. Next, the cells were collected, lysed in 1 mL 
TRIzol and stored at −80  °C until RNA extraction. Cell 
supernatants were collected and stored at −80  °C until 
further processing.

RNA extraction and cDNA synthesis
Prior to RNA extraction, frozen tissue sample were 
homogenized in liquid nitrogen with mortar and pestle. 
RNases were removed by baking mortar and pestle at 
least 3 h at 200 °C. Briefly, mortar and pestle were chilled 
in liquid nitrogen followed by grinding of the tissues until 
a fine powder was formed. This powder (600–1200 mg) 
was added to 1.0 mL prewarmed (37 °C) TRIzol Reagent 

and immediately mixed well. Then RNA was extracted 
following the manufacturer’s instructions. RNA samples 
were treated with DNase I (Promega, Madison, WI, USA) 
and purified with the RNeasy Mini Kit (Qiagen Benelux, 
Venlo, The Netherlands) according to the manufactur-
er’s guidelines. The RNA concentration and purity were 
determined by measuring the optical density at OD260/
OD280 and OD260/OD230 with a NanoDrop 2000/2000c 
spectrophotometer (NanoDrop Technologies, Wilm-
ingtom, DE, USA). All samples had OD260/OD280 ratios 
between 1.9 and 2.0 and OD260/OD230 ratios between 
1.9 and 2.1. Total RNA (1  μg) was reverse transcribed 
using Superscript™ III Reverse Transcriptase (200 U; Life 
Technologies) and random primers (7.5 ng/μL; Life Tech-
nologies). To check the synthesis of amplifiable cDNA in 
the reverse transcription, a conventional PCR step was 
performed using GAPDH and β-actin specific primers 
(Table 1).

Real‑time qPCR
Primers (Table 1) were designed using Primer 5 to span 
an exon–exon junction thereby avoiding amplification of 
genomic DNA. The primers were purchased from Euro-
gentec (Liege, Belgium). The amplification efficiency of 
all the reactions ranged from 94 to 103%. The PCR prod-
ucts were sequenced and subjected to agarose gel elec-
trophoresis to verify their specificity. cDNA was diluted 
8x in DEPC-treated ddH2O and combined with primer 
pairs and SYBR Green PCR Master Mix (Applied Biosys-
tems, Warrington, UK) according to the manufacturer’s 
recommendations. Quantitative PCR (qPCR) assays were 
run on the StepOnePlus real-time PCR system (Applied 
Biosystems) with the following cycling conditions: 95 °C 
for 3 min, followed by 40 cycles of denaturation at 95 °C 
for 15  s, annealing for 30  s and elongation at 72  °C for 
30  s. Fluorescence acquisition was measured at 72  °C 
and melting curve analysis was done at 65–95  °C with 
continuous fluorescence acquisition. The stability of the 
GAPDH, β-actin, 60S ribosomal protein L19 (RPL-19) 
and Cyclophilin A (CyPA) mRNA expression levels was 
evaluated by geNorm [37]. We finally selected GAPDH, 
β-actin and RPL-19 as reference genes. All reactions were 
performed in triplicate and relative gene transcription 
values were calculated using the 2−ΔΔCt method and nor-
malized against these three selected reference genes [38].

Purification of F4 fimbriae
F4 fimbriae were purified from the ETEC reference strain 
GIS 26 or the IMM01 strain (O147:F4ac+LT+STb+, 
which lacks flagellin expression) as previously described 
[9]. Briefly, the bacteria were cultured in tryptone soy 
broth (Difco Laboratories, Biotrading, Bierbeek, Bel-
gium) at 37  °C for 18 h, collected by centrifugation and 
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washed in sterile PBS. Subsequently, F4 fimbriae were 
isolated by mechanical shearing of the bacterial suspen-
sion followed by centrifugation to remove the remaining 
bacteria. The fimbriae were precipitated with ammonium 
sulfate (40% saturation), the pellet was dissolved in PBS 
and dialysed overnight against PBS at 4 °C. Next, the fim-
brial proteins were filtrated (0.22 μm) and the endotox-
ins were removed by using EndoTrap columns (Hyglos 
GmbH, Regensburg, Germany) following the manufac-
turer’s guidelines. After endotoxin removal, the fimbrial 
solution contained almost no endotoxin (0.24 EU/mL) as 

determined by the Limulus amebocyte lysate test (Lonza, 
Walkersville, MD, USA). The protein concentration was 
determined by the bicinchoninic acid reaction (Sigma-
Aldrich) with bovine serum albumin as a standard and 
the purity was assessed by sodium dodecyl sulphate poly-
acrylamide gel electrophoresis (SDS-PAGE, 12%).

Oral immunization with purified F4 fimbriae
Eleven F4 receptor-positive (F4R+) piglets (4–5-weeks-
old) were selected, housed and treated with antibiotics 
as described above. The experimental group consisted 

Table 1  List of the primers used in the qPCR assay

RORγt: RAR-related orphan receptor gamma t, AID: activation-induced (cytidine) deaminase, RPL-19: 60S ribosomal protein L19

Gene Sequence (5′→3′) Size (bp) Ta (°C) Reference

IL-17A F:ACTCCAAACGCTTCACCTCAC 234 58 NM_001005729.1

R:AGCCCACTGTCACCATCACTT

IL-17B-like F:CTGGCCAAGAGGAAGTGTGAG 92 60 XM_003124086.1

R:GGGTCGTGGTTGATGCTGTAG

IL-17F F:GAGGCAGCAGCTCGGAAAAT 173 60 NC_010449.4

R:TCCCGGGTGATGTTGTAATCC

IL-21 F:GGCACAGTGGCCCATAAATC 124 60 [30]

R:GCAGCAATTCAGGGTCCAAG

IL-22 F:TTGACCAGTCCAACTTCCAGCAGC 143 60 XM_001926156.1

R:GCAGCGCTCTCTCATATTGACTCC

IL-23p19 F:CCAAGAGAAGAGGGAGATGATGA 107 57 NM_001130236.1

R:TGCAAGCAGGACTGACTGTTGT

RORγt F:TTCAGTACGTGGTGGAGTTC 141 60 [30]

R:TGTGGTTGTCAGCGTTGTAG

IL-10 F : CCATGCCCAGCTCAGCACTG 295 60 [65]

R:CCCATCACTCTCTGCCTTCGG

IL-13 F:GTCATTGCTCTCACCTGCTT 308 58 [66]

R:TTGGTGTCTCGGATGTGCTT

GATA-3 F:GCTCTACCACAAAATGAACGGAC 110 58 NM_001044567.1

R:TCGTTGTGGTTTGACAGTTTGC

IL-12p40 F:GGTTTCAGACCCGACGAACTCT 112 60 [67]

R:CATATGGCCACAATGGGAGATG

IFN-γ F:GAGCCAAATTGTCTCCTTCTACT 262 60 [68]

R:CTGACTTCTCTTCCGCTTTCT

T-bet F:TCAATCCTACTGCCCACTAC 151 60 [69]

R:TTAGGAGACTCTGGGTGAAC

Foxp3 F:TGCCATTCGCCACAACTT 179 60 NM_001128438.1

R:CCTGTCCATCCTTCTTTCCTT

AID F:AGAAGTTTCAAAGCCTGGGAG 92 57 XM_003126511.1

R:TCAACCTCATACAGGGGCAAA

β-Actin F:TCATCACCATCGGCAACG 133 60 [70]

R:TTCCTGATGTCCACGTCGC

GAPDH F:GGGCATGAACCATGAGAAGT 230 60 [65]

R:AAGCAGGGATGATGTTCTGG

RPL19 F:AACTCCCGTCAGCAGATCC 147 60 [69]

R:AGTACCCTTCCGCTTACCG
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of six F4 fimbriae seronegative pigs (three Hypor-west 
and three Large White ×  Belgian Landrace), while the 
control group contained five F4 fimbriae seropositive 
pigs (two Hypor × Pietrain and three Yorkshire × Large 
White × Landrace). Prior to the oral immunization pig-
lets were deprived of feed and water for 3 h. Purified F4 
fimbriae from the GIS26 strain (1 mg in 10 mL PBS) or 
PBS were administered orally for three subsequent days 
to the piglets of the experimental or the control group, 
respectively. Blood was taken from the jugular vein on 
the day prior to the initial immunization and at D4 and 
D9 post immunization to isolate PBMCs for RNA extrac-
tion as described above. Blood samples of D0 and D9 
were also used to measure F4-specific serum IgG and IgA 
antibodies by ELISA to monitor immunization success 
[9].

In vitro culture of PBMCs
Blood was taken from 8–12-week-old healthy conven-
tionally reared, F4 seronegative pigs (Belgian Landrace) 
and PBMCs were isolated and suspended at a concen-
tration of 5  ×  106 cells/mL in leukocyte medium as 
described above. Subsequently, PBMCs were transferred 
to a 24-well tissue culture plate and stimulated with 5 μg/
mL F4 fimbriae in the presence or absence of polymyxin 
B (Sigma-Aldrich), endotoxin-free F4 fimbriae (5 μg/mL) 
or medium at 37 °C, 5% CO2 in a humidified atmosphere. 
The cells and supernatants were harvested at 24, 48 and 
72 h after stimulation and stored properly as mentioned 
above. The mRNA expression profile of the PBMCs was 
analyzed using qPCR as described above.

Cytokine ELISA
The secretion of IL-17A, IL-10, IFN-γ and IL-22 in cell-
free supernatants was measured using commercial ELISA 
kits according to the manufacturer’s guidelines (IL-17A 
and IFN-γ, Kingfisher biotech; IL-10, Life Technologies; 
IL-22, Sigma-Aldrich).

Statistical analysis
Statistical analysis was performed with the Mann–Whit-
ney U test or Kruskal–Wallis Test for the independent 
samples and Friedman’s two-way analysis for the related 
samples in the SPSS 22 software package. The signifi-
cance level was set at p < 0.05.

Results
F4+ ETEC infection triggers IL‑17 signature responses 
in PBMCs and small intestinal tissues
To analyze the type of immune response elicited by F4+ 
ETEC, we assessed the mRNA expression profile of key 
cytokines and transcription factors involved in either T 
cell polarization or their effector functions. Indeed, the 

mRNA expression levels of Th1 (IFN-γ, IL-12, T-bet), 
Th2 (IL-13, GATA-3), Th17 (IL-17A, IL-21, IL-22 IL-
23p19, orphan nuclear receptor (RORγt)) and regula-
tory T cells (Foxp3, IL-10) were evaluated in PBMCs and 
several intestinal tissues. In addition, the mRNA expres-
sion of the IL-17 family cytokines IL-17B and IL-17F as 
well as activation-induced (cytidine) deaminase (AID), a 
B-cell specific enzyme required for somatic hypermuta-
tion and class switch recombination, was assessed. Fol-
lowing F4+ ETEC challenge, only one of the three pigs 
exhibited severe diarrhea, while F4+ ETEC shedding was 
detected in all infected pigs (Additional file  1). Nota-
bly, the expression of IL-17A mRNA was significantly 
increased in PBMCs at D2 and D3 after F4+ ETEC infec-
tion (Figure 1). In addition, an increased mRNA expres-
sion of IL-23p19 and RORγt was also detected these days 
(Figure 1). Moreover, F4+ ETEC infection also increased 
the mRNA expression of the Th17 cytokines IL-21, IL-22 
and IL-17F. In contrast, IL-17B mRNA expression was 
downregulated in F4+ ETEC infected pigs (Figure  1). 
With regard to the Th1-related genes, only the mRNA 
expression of IFN-γ was upregulated at D3 and D4, while 
the mRNA expression of the Th1-related transcription 
factor T-bet and the Th1-inducing cytokine IL-12 was 
not influenced by F4+ ETEC infection. ETEC infection 
also significantly enhanced the mRNA expression of the 
Th2-related transcription factor GATA-3 and the Tregs-
related genes Foxp3 and IL-10. Also the AID mRNA lev-
els increased by F4+ ETEC in a time-dependent manner 
in the PBMCs compared to control pigs, which could 
indicate the presence of pathogen-specific circulating B 
cells undergoing class switching.

We further compared the expression profiles of these 
transcription factors and cytokines in several intestinal 
tissues on D4 after F4+ ETEC infection. As shown in 
Figure 2, the fold changes of almost all the examined tran-
scripts were higher in the Peyer’s patches (PP) and MLNs 
than those in the jejunal and ileal lamina propria after 
F4+ ETEC infection. Interestingly, these transcripts also 
displayed higher expression in the PP and MLN of con-
trol pigs (Additional file 2). Similar to PBMCs, F4+ ETEC 
infection significantly increased IL-17A, IL-17F, IL-21 
and IL-23p19 mRNA levels in all examined tissues as 
compared to control pigs (Figure 2). In addition, IL-17A, 
IL-17F and IL-23p19 transcripts were strongly induced 
in PP and MLN. In contrast to PBMCs, IL-17B mRNA 
expression was upregulated upon F4+ ETEC infection in 
all intestinal tissues except jejunum (JJ). No significant 
difference in IL-22 mRNA expression was observed in 
jejunal and ileal lamina propria, whereas a small upregu-
lation was found in the ileal PP and MLN in F4+ ETEC 
infected pigs as compared to control pigs. Regarding the 
Th2-related genes, we observed upregulated IL-13 and 
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GATA-3 mRNA levels with the highest change in the 
ileal PP and MLN, respectively. Similar to the systemic 
immune system, F4+ ETEC infection did not alter the 
intestinal mRNA expression of IL-12, IFN-γ and T-bet 
(Figure  2), while both Foxp3 and IL-10 mRNA levels 
were significantly upregulated, especially in the PP and 
MLN. Interestingly, mRNA expression of AID was highly 
upregulated upon F4+ ETEC infection in the PP and 
MLN, indicating active class switching in those tissues.

F4+ ETEC infection increased CD3+IL‑17A+ T cells in the 
intestinal tissue
Given the high expression of IL-17A mRNA in the ileal 
PP of F4+ ETEC infected piglets, we assessed if this cor-
related with an influx of IL-17A+ T cells in that tis-
sue. Immunofluorescence analysis of ileal tissue clearly 
showed an increase in CD3+IL-17A+ cells in the crypts 
and villi in F4+ ETEC infected piglets as compared to 

controls. In contrast, colocalization of CD3 and IL-17A 
was rarely observed in the tissue of control pigs (Figure 3).

Oral immunization of piglets with F4 fimbriae triggered 
systemic IL‑17 responses
We detected robust Th17 and IL-17-related cytokine 
responses upon F4+ ETEC infection both in intesti-
nal tissues and PBMCs. In a next effort we wanted to 
determine if these observations could be reproduced by 
oral immunization of piglets with F4 fimbriae, as these 
are potent oral immunogens. We only focused on the 
PBMCs since similar systemic and mucosal responses 
were found after F4+ ETEC infection. Upon immuniza-
tion, the F4-specific IgG and IgA serum antibody titers 
were significantly increased as compared to the control 
group (Additional file  3), indicating a successful immu-
nization. Similar to F4+ ETEC infection, oral immuniza-
tion with F4 fimbriae significantly increased the mRNA 

Figure 1  The mRNA expression profile in PBMCs triggered by F4+ ETEC infection. Piglets were infected with F4+ ETEC on day 0 (D0) and 
day 1 (D1). PBMCs were isolated from piglets on D0 until D4 after infection. The mRNA expression in the PBMCs of F4+ ETEC infected and control 
piglets was analyzed by qPCR. The mRNA expression level was normalized to the reference genes and then to the control group for every separate 
day. Then, the data were plotted relative to D0. Data are presented as the mean ± SEM (n = 3 per group). * p < 0.05, ** p < 0.01.
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expression of Th17-related genes, including IL-17F, 
IL-21, IL-22, IL-23p19 and RORγt, although with differ-
ent kinetics (Figure  4). Compared to control pigs, sig-
nificant changes were only observed at D4 for IL-17F 
and IL-23p19 and at D9 for IL-22, whereas IL-21 and 
RORγt mRNA expression levels peaked at D4. Unexpect-
edly, IL-17A mRNA expression was undetectable in por-
cine PBMCs upon oral immunization with F4 fimbriae. 
In contrast to the PBMCs of F4+ ETEC infected pigs, 
oral immunization with F4 fimbriae upregulated IL-17B 
mRNA expression at D4. In agreement with F4+ ETEC 
infection, only IFN-γ, but not IL-12 and T-bet, mRNA 
expression was elevated in immunized pigs. Likewise, 
GATA-3 levels increased in a time-dependent manner to 
reach significance at D9. Unexpectedly, we also failed to 
detect IL-13 mRNA expression in PBMCs upon F4 fim-
briae immunization. Regarding the Tregs-related genes, 
only Foxp3 mRNA expression was enhanced. Similar to 

the infection trial, we also found a significant increase of 
AID mRNA expression, presumably indicating the pres-
ence of F4-specific circulating B-cells undergoing class 
switching.

F4 fimbriae induced a Th17‑signature cytokine expression 
in naive PBMCs
The above data indicate the potential of F4 fimbriae to 
induce Th17 responses. To further address this potential, 
PBMCs were isolated from naive animals and stimulated 
with F4 fimbriae. Upon stimulation for 24 h the mRNA 
expression levels of IL-17A, IL-17F and IL-22 were sig-
nificantly increased as compared to unstimulated cells 
(Figure  5). This upregulated expression level lasted at 
least till 72  h post stimulation. In addition, F4 fimbriae 
significantly enhanced IL-23p19 mRNA expression, 
which peaked at 24  h post stimulation, while IL-21 and 
RORγt mRNA expression only displayed a significant 

Figure 2  F4+ ETEC infection induced mRNA expression profile in intestinal tissues. The F4+ ETEC infection was performed on day 0 
(D0) and day 1 (D1). Intestinal samples were collected on D4. The mRNA expression in intestinal tissues of F4+ ETEC infected or control pigs was 
analyzed by qPCR. The mRNA expression was normalized to the reference genes and then to the control group for all separate intestinal tissues. 
Data are presented as the mean ± SEM (n = 3 per group). JJ: jejunum without Peyer’s patches, JP: jejunum with Peyer’s patches, IL: ileum without 
Peyer’s patches, IP: ileum with Peyer’s patches, MLN: mesenteric lymph nodes. * indicates significant differences as compared to the control group, * 
p < 0.05, ** p < 0.01, *** p < 0.001.



Page 8 of 14Luo et al. Vet Res  (2015) 46:121 

change at 72 h (Figure 5). Intriguingly, F4 fimbriae stim-
ulated PBMCs downregulated IL-17B mRNA expres-
sion. Regarding the Th1-related genes, we only observed 
a significant upregulation of IFN-γ transcripts, while 
IL-12 and T-bet mRNA levels were not affected. Further-
more, no significant difference in the mRNA expression 
of Foxp3, IL-10, GATA-3 and IL-13 was observed. Simi-
lar to the infection and immunization experiment, AID 
mRNA levels were significantly increased in F4 fimbriae 
stimulated PBMCs (Figure 5).

To confirm that the increased transcript levels upon 
stimulation of PBMCs with F4 fimbriae resulted in 
higher protein levels, we measured the secretion of 

the corresponding cytokines using ELISA. As shown 
in Figure  6, stimulation with F4 fimbriae significantly 
increased IL-17A secretion by PBMCs as fast as 24  h 
post stimulation. Moreover, endotoxins in the fimbrial 
solution did not exert a significant effect on the IL-17A 
secretion (Additional file  4). F4 fimbriae also triggered 
the secretion of IL-22 by PBMCs, while no significant 
changes were observed for IL-10 and IFN-γ.

F4 fimbriae boosted Th17 responses in an antigen recall 
assay
To confirm the presence of circulating F4-specific lym-
phocytes, PBMCs from F4+ ETEC infected pigs were 

Figure 3  Increased presence of IL-17A+ T cells in the ileum of F4+ ETEC infected piglets. Cryosections were stained with anti-IL-17A (FITC, 
green) and anti-CD3 mAbs (Texas Red-X, red). The nuclei were counterstained with Hoechst (blue). Images are representative for all piglets in both 
groups. The arrows indicate colocalization of CD3 and IL-17A.
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restimulated with F4 fimbriae for 48  h and the mRNA 
expression levels of the above mentioned cytokines 
and transcription factors were assessed. As shown in 
Figure  7A, restimulation with the fimbriae resulted in 
the upregulation of all examined transcripts, except 
IL-13 and IL-12. The Th17-related genes IL-17A, IL-
17B, IL-17F, RORγt, IL-21, IL-22 and IL-23p19 as well as 
AID were highly upregulated. In addition, Foxp3, IL-10, 
GATA-3, IFN-γ and T-bet mRNA expression levels were 
increased after F4 restimulation, although not to the 
same extent as the Th17-related cytokines. Furthermore, 
the upregulated IL-17A and IL-22 transcripts elicited by 
F4 fimbriae restimulation correlated with an augmented 
IL-17A and IL-22 cytokine secretion by the PBMCs, 
while the increase in IFN-γ and IL-10 production was not 
statistically significant (Figure 7B).

Discussion
Th17 effector cells are important to eradicate mucosal 
pathogens including extracellular bacteria, fungi and even 
helminths [17, 39, 40]. These Th17 cells are characterized 
by the secretion of IL-17A, IL-17F, IL-21 and IL-22. The 
latter contribute to the protective function of Th17 cells by 
inducing the expression of defensins, mucins, tight junc-
tion proteins and lipopolysaccharide-binding proteins, 
which all reinforce the epithelial barrier [41]. Although 
some progress has been made to elucidate the cytokine 
response of intestinal epithelial cells to ETEC or its 

virulence factors [42–46], only few studies have evaluated 
the transcriptomic profile in PBMCs and intestinal tissues 
upon F4+ ETEC infection or oral immunization with F4 
fimbriae prior to this report [47]. Recent work at our labo-
ratory first hinted at the importance of IL-17A in innate 
immunity targeted to fend off F4+ ETEC infection as IL-
17A mRNA levels were upregulated in the small intestine 
of piglets 4 h after F4+ ETEC colonization [33]. Zhu and 
colleagues on the other hand observed a downregulated 
expression of IL-17A mRNA in both jejunum and ileum 
1 week after F4+ ETEC challenge, although this downreg-
ulation did not reach the significant level. In addition, no 
significant changes were observed in the mRNA expres-
sion levels of IFN-γ, IL-12p40, IL-4, IL-2, IL-10, Foxp3 
and TGF-β, except for an upregulated IL-6 mRNA expres-
sion [34]. As F4+ ETEC colonize the gut very soon upon 
ingestion and clearance of this pathogen usually occurs at 
7 days post infection [10], any changes in cytokine expres-
sion levels should have occurred earlier. Here, we evalu-
ated the mRNA expression profile in PBMCs from day 0 
to 4 upon F4+ ETEC infection and at day 4 in the intes-
tinal tissues. F4+ ETEC infection triggered an increased 
expression of IL-17A, IL-17F, IL-21, IL-22, IL-23p19 and 
RORγt in the intestine and PBMC fraction, hinting at a 
potential role of Th17 cells to clear F4+ ETEC infections 
in piglets. Indeed, IL-17A, IL-17F, IL-21 and IL-22 are 
preferentially produced by Th17 cells, while the transcrip-
tion factor RORγt and IL-23 play essential roles in the 

Figure 4  F4 fimbriae trigger mRNA expression of IL-17 cytokines in PBMCs upon oral immunization. The piglets were immunized with 
1 mg F4 fimbriae on day 0 (D0), D1 and D2. PBMCs were isolated from piglets on D0 before immunization and on D4 and D9 after immunization. 
The mRNA expression in PBMCs isolated from F4-immunized or control piglets was analyzed by qPCR. The mRNA expression level was normalized 
to the reference genes and then to the control group for every separate day. Data are presented as the mean ± SEM (n = 5 per group). * p < 0.05, ** 
p < 0.01.
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differentiation and expansion of Th17 cells, respectively 
[48, 49]. The involvement of Th17 cells is also evidenced 
by the occurrence of relatively large amounts of IL-17A 
producing T cells in the intestinal tissue of F4+ ETEC 
infected piglets. Interestingly, we also observed a strong 

upregulation of IL-17F mRNA expression. IL-17A and 
IL17F have similar biological actions as both cytokines 
mediate pro-inflammatory responses and play a role in 
the host defense against certain mucosal pathogens, such 
as C. rodentium [50–52]. Thus, we speculate that both 

Figure 5  F4 fimbriae elicit an IL-17 dominated cytokine response in naïve PBMCs. PBMCs were isolated from naïve piglets and were stimu-
lated with F4 fimbriae (5 μg/mL) for 24, 48 and 72 h. The mRNA expression profile was analyzed by qPCR. mRNA expression levels were normal-
ized to the reference genes and then to the control group for each time point. Then, the data for every day was plotted relative to day 0. Data are 
presented as the mean ± SEM (n = 3). NS: non-stimulated. * p < 0.05, ** p < 0.01.

Figure 6  Cytokine secretion by F4 fimbriae stimulated naïve PBMCs. PBMCs were stimulated with endotoxin-free F4 fimbriae (5 μg/mL) 
or medium for 72 h. The protein level of IL-17A, IL-22, IFN-γ and IL-10 in the supernatant was determined by ELISA. Data are presented as the 
mean ± SEM (n = 3). NS: non-stimulated, * p < 0.05, ** p < 0.01.
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IL-17A and IL-17F are required for the protection against 
F4+ ETEC infection in piglets. Further research should 
elucidate the contribution of each cytokine to protection 
against ETEC, especially as divergent roles for IL-17A and 
-F in immunity have been reported [53, 54]. Intriguingly, 
we observed a differential regulation of IL-17B mRNA 
expression in intestinal tissues and PBMCs upon F4+ 
ETEC infection, which may suggest IL-17B has a different 
function in mucosal and systemic immunity. Not much is 
known about IL-17B. This cytokine is expressed by mono-
cytes and neutrophils and induces the secretion of pro-
inflammatory cytokines [55–58]. Further research should 
identify the IL-17B-producing cells in pigs and elucidate 
their role in the host defense against mucosal pathogens.

In contrast to the increased level of Th17-related 
cytokines, F4+ ETEC infection did not affect the expres-
sion level of the Th1-related genes IL-12, IFN-γ and T-bet 
in both PBMCs and intestinal tissues, although a small 
increased IFN-γ expression was observed in the PBMC 
fraction on D3 and 4 upon infection. F4+ ETEC infec-
tion also resulted in an increased mRNA expression of 
IL-13, GATA-3, IL-10, and Foxp3, especially in the gas-
trointestinal tract. Upregulated Foxp3 and IL-10 mRNA 
expression probably indicates the induction of Tregs 

during the later stages of F4+ ETEC infection [59]. Since 
ETEC infection causes inflammation and intestinal dam-
age in piglets, the induction of Tregs is probably required 
to limit these responses and to avoid immunopathology 
due to an overwhelming Th17 immunity [60, 61]. It is 
worth noting that F4+ ETEC infection triggered a sig-
nificant increase in AID mRNA expression in PBMCs, 
Peyers patches and MLN. AID is a B cell specific enzyme 
required for the class switch recombination (CSR) in 
activated B cells [62]. In the F4+ ETEC infection model, 
F4-specific IgG and IgA antibody-secreting cells were 
observed in most tissues 4  days post infection [3, 10]. 
Hence, the increased AID mRNA level probably reflects 
ongoing class switching in B cells. Moreover, the strong 
induction of AID mRNA expression further supports 
the involvement of Th17 cells, since these cells also par-
ticipate in B cell differentiation and subsequent SIgA pro-
duction [13, 14, 63].

Previous studies in our lab indicated the strong oral 
immunogenicity of F4 fimbriae [3, 7, 9, 10]. To estab-
lish whether oral immunization with F4 fimbriae could 
elicit similar responses as an F4+ ETEC infection, we 
analyzed the cytokine mRNA expressions in PBMCs. 
Similar to infection, we observed a robust expression of 
the Th17-related genes RORγt, IL-23p19, IL-17F, IL-21 
and IL-22. Likewise, Foxp3 and AID mRNA levels were 
also increased from day 4 onwards. These results indi-
cate the capacity of F4 fimbriae to elicit Th17 responses 
and induce class switching in B cells upon oral adminis-
tration. Unexpectedly, we failed to detect IL-17A mRNA 
expression. Upon ETEC infection, we observed a peak 
expression of IL-17A mRNA at 2  days post infection 
and the inability to detect IL-17A could be attributed 
to the later sampling point in the immunization experi-
ment or indicate an important role for other molecules 
such as the enterotoxins in the IL-17A mRNA expres-
sion during infection [33]. The mRNA profile in the 
PBMCs upon oral immunization were F4 fimbriae spe-
cific, since PBMCs from naive piglets showed an upreg-
ulated mRNA expression of Th17-related genes and an 
enhanced secretion of IL-17A and IL-22 upon stimula-
tion with these fimbriae. On top of that, these responses 
were further amplified in the PBMCs isolated from F4+ 
ETEC infected animals upon F4 fimbriae stimulation. 
In contrast, all the Th1- (except IFN-γ) and Th2-related 
genes did not show any significant change in naive 
PBMCs in the first 72  h, which corroborates a previ-
ous study [64]. In addition, Th1 effector cells and Tregs 
appear to be less important during F4+ ETEC infection, 
since no significant antigen specific IFN-γ and IL-10 
recall responses were obtained by restimulation with F4 
fimbriae.

Figure 7  Th17 signature dominates in an antigen recall assay. 
PBMCs were isolated from F4+ ETEC infected animals and stimulated 
with F4 fimbriae (5 μg/mL) or medium for 48 h. A The mRNA expres-
sion profile in PBMCs was analyzed by qPCR. The mRNA expression 
level was normalized to the reference genes and then to control 
PBMCs. * indicates significant differences as compared to the control 
group. B The secretion of IL-17A, IL-22, IFN-γ and IL-10 by PBMCs was 
determined by ELISA. Data are presented as mean ± SEM (n = 3 per 
group). NS: non-stimulated, * p < 0.05, ** p < 0.01 and *** p < 0.001.
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In conclusion, F4+ ETEC infection and oral immuniza-
tion with F4 fimbriae elicited robust expression of Th17-
related genes and IL-17 producing T cells, indicating that 
Th17 effector cells participate in the protective immu-
nity to ETEC infection in piglets and that these Th17 
responses are in part induced by F4 fimbriae. Moreover, 
we also hinted at the potential participation of IL-17B and 
IL-17F in the clearance of F4+ ETEC infection. Altogether, 
our results could facilitate the design of ETEC vaccines.
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ETEC infection. Piglets were orally inoculated with either 1010 CFU F4+ 
ETEC (Pig 4 to 6) in 10 mL PBS or only PBS (Pig 1 to 3) as control at day 0 
and 1. Faecal samples were collected from day 0 to 4 and inoculated onto 
blood agar plates and then the number of F4-specific hemolytic E. coli 
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membranes and detecting F4 fimbriae with an F4ac-specific MAb.

Additional file 2. The distribution of mRNA in intestinal tissues 
of control pigs. The mRNA expression in intestinal tissues of control 
pigs was analyzed by qPCR. The mRNA expression was normalized to the 
reference genes and then to jejunum without Peyer’s patches. Data are 
presented as the mean ± SEM (n = 3 per group). JJ = jejunum without 
Peyer’s patches, JP = jejunum with Peyer’s patches, IL = ileum without 
Peyer’s patches, IP = ileum with Peyer’s patches, MLN = mesenteric 
lymph nodes. * p < 0.05, ** p < 0.01.

Additional file 3. Oral immunization with F4 fimbriae induced 
F4-specific serum antibodies. The piglets were immunized with 1 mg 
F4 fimbriae on day 0 (D0), D1 and D2. Blood was drawn on D0 before 
immunization and D9 after immunization. The F4-specific antibody 
(Ab) titer was tested in serum using ELISA. Data are presented as the 
mean ± SEM (n = 5 per group).

Additional file 4. Effect of endotoxins on IL-17A secretion. PBMCs 
were stimulated with endotoxin-free F4 fimbriae (5 μg/mL), F4 fimbriae 
(5 μg/mL) in the presence or absence of polymyxin B (PMB, 25 μg/mL) or 
medium for 72 h. The IL-17A concentration in the cell-free supernatant 
was determined by ELISA. Data are presented as the mean ± SEM (n = 3).
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