88 research outputs found

    Achieving flow in theatre performance

    Get PDF
    This study examines the idea of flow, the state of optimal experience, and determines how it relates to theatrical performance. Using the methodology presented in Mihaly Csikszentmihalyi\u27s FLOW: The Psychology of Optimal Experience, I examine the rehearsal and performance processes of theatre in terms of the steps needed to reach a state of optimal experience. I specifically look at the issues of repeatability (reaching the state of flow night after night), consciousness (awareness), self-consciousness and concentration. In addition, I discuss options performers have for receiving feedback as theorized in the works of Anne Bogart, Constantin Stanislavski, David Mamet and interviews conducted with professional actors, George DiCenzo and Ellen Tobie. Although tracing the steps to flow can help performers improve and give them an insight into their successes and failures, performers are merely human and may not reach the zone every night

    A stochastic model for CD4+ T cell proliferation and dissemination network in primary immune response

    Get PDF
    The study of the initial phase of the adaptive immune response after first antigen encounter provides essential information on the magnitude and quality of the immune response. This phase is characterized by proliferation and dissemination of T cells in the lymphoid organs. Modeling and identifying the key features of this phenomenon may provide a useful tool for the analysis and prediction of the effects of immunization. This knowledge can be effectively exploited in vaccinology, where it is of interest to evaluate and compare the responses to different vaccine formulations. The objective of this paper is to construct a stochastic model based on branching process theory, for the dissemination network of antigen-specific CD4+ T cells. The devised model is validated on in vivo animal experimental data. The model presented has been applied to the vaccine immunization context making references to simple proliferation laws that take into account division, death and quiescence, but it can also be applied to any context where it is of interest to study the dynamic evolution of a population. Copyright:© 2015 Boianelli et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    In silico evolution of diauxic growth

    Get PDF
    The glucose effect is a well known phenomenon whereby cells, when presented with two different nutrients, show a diauxic growth pattern, i.e. an episode of exponential growth followed by a lag phase of reduced growth followed by a second phase of exponential growth. Diauxic growth is usually thought of as a an adaptation to maximise biomass production in an environment offering two or more carbon sources. While diauxic growth has been studied widely both experimentally and theoretically, the hypothesis that diauxic growth is a strategy to increase overall growth has remained an unconfirmed conjecture. Here, we present a minimal mathematical model of a bacterial nutrient uptake system and metabolism. We subject this model to artificial evolution to test under which conditions diauxic growth evolves. As a result, we find that, indeed, sequential uptake of nutrients emerges if there is competition for nutrients and the metabolism/uptake system is capacity limited. However, we also find that diauxic growth is a secondary effect of this system and that the speed-up of nutrient uptake is a much larger effect. Notably, this speed-up of nutrient uptake coincides with an overall reduction of efficiency. Our two main conclusions are: (i) Cells competing for the same nutrients evolve rapid but inefficient growth dynamics. (ii) In the deterministic models we use here no substantial lag-phase evolves. This suggests that the lag-phase is a consequence of stochastic gene expression

    Modelling cross-reactivity and memory in the cellular adaptive immune response to influenza infection in the host

    Full text link
    The cellular adaptive immune response plays a key role in resolving influenza infection. Experiments where individuals are successively infected with different strains within a short timeframe provide insight into the underlying viral dynamics and the role of a cross-reactive immune response in resolving an acute infection. We construct a mathematical model of within-host influenza viral dynamics including three possible factors which determine the strength of the cross-reactive cellular adaptive immune response: the initial naive T cell number, the avidity of the interaction between T cells and the epitopes presented by infected cells, and the epitope abundance per infected cell. Our model explains the experimentally observed shortening of a second infection when cross-reactivity is present, and shows that memory in the cellular adaptive immune response is necessary to protect against a second infection.Comment: 35 pages, 12 figure

    The lag-phase during diauxic growth is a trade-off between fast adaptation and high growth rate

    Get PDF
    Bi-phasic or diauxic growth is often observed when microbes are grown in a chemically defined medium containing two sugars (for example glucose and lactose). Typically, the two growth stages are separated by an often lengthy phase of arrested growth, the so-called lag-phase. Diauxic growth is usually interpreted as an adaptation to maximise population growth in multi-nutrient environments. However, the lag-phase implies a substantial loss of growth during the switch-over. It therefore remains unexplained why the lag-phase is adaptive. Here we show by means of a stochastic simulation model based on the bacterial PTS system that it is not possible to shorten the lag-phase without incurring a permanent growth-penalty. Mechanistically, this is due to the inherent and well established limitations of biological sensors to operate efficiently at a given resource cost. Hence, there is a trade-off between lost growth during the diauxic switch and the long-term growth potential of the cell. Using simulated evolution we predict that the lag-phase will evolve depending on the distribution of conditions experienced during adaptation. In environments where switching is less frequently required, the lag-phase will evolve to be longer whereas, in frequently changing environments, the lag-phase will evolve to be shorter

    A Functional Genomics Approach to Establish the Complement of Carbohydrate Transporters in Streptococcus pneumoniae

    Get PDF
    The aerotolerant anaerobe Streptococcus pneumoniae is part of the normal nasopharyngeal microbiota of humans and one of the most important invasive pathogens. A genomic survey allowed establishing the occurrence of twenty-one phosphotransferase systems, seven carbohydrate uptake ABC transporters, one sodium∶solute symporter and a permease, underlining an exceptionally high capacity for uptake of carbohydrate substrates. Despite high genomic variability, combined phenotypic and genomic analysis of twenty sequenced strains did assign the substrate specificity only to two uptake systems. Systematic analysis of mutants for most carbohydrate transporters enabled us to assign a phenotype and substrate specificity to twenty-three transport systems. For five putative transporters for galactose, pentoses, ribonucleosides and sulphated glycans activity was inferred, but not experimentally confirmed and only one transport system remains with an unknown substrate and lack of any functional annotation. Using a metabolic approach, 80% of the thirty-two fermentable carbon substrates were assigned to the corresponding transporter. The complexity and robustness of sugar uptake is underlined by the finding that many transporters have multiple substrates, and many sugars are transported by more than one system. The present work permits to draw a functional map of the complete arsenal of carbohydrate utilisation proteins of pneumococci, allows re-annotation of genomic data and might serve as a reference for related species. These data provide tools for specific investigation of the roles of the different carbon substrates on pneumococcal physiology in the host during carriage and invasive infection

    Modeling Influenza Virus Infection: A Roadmap for Influenza Research

    No full text
    Influenza A virus (IAV) infection represents a global threat causing seasonal outbreaks and pandemics. Additionally, secondary bacterial infections, caused mainly by Streptococcus pneumoniae, are one of the main complications and responsible for the enhanced morbidity and mortality associated with IAV infections. In spite of the significant advances in our knowledge of IAV infections, holistic comprehension of the interplay between IAV and the host immune response (IR) remains largely fragmented. During the last decade, mathematical modeling has been instrumental to explain and quantify IAV dynamics. In this paper, we review not only the state of the art of mathematical models of IAV infection but also the methodologies exploited for parameter estimation. We focus on the adaptive IR control of IAV infection and the possible mechanisms that could promote a secondary bacterial coinfection. To exemplify IAV dynamics and identifiability issues, a mathematical model to explain the interactions between adaptive IR and IAV infection is considered. Furthermore, in this paper we propose a roadmap for future influenza research. The development of a mathematical modeling framework with a secondary bacterial coinfection, immunosenescence, host genetic factors and responsiveness to vaccination will be pivotal to advance IAV infection understanding and treatment optimization

    PK/PD-based adaptive tailoring of oseltamivir doses to treat within-host influenza viral infections.

    No full text
    Influenza A virus (IAV) is a latent global threat to human health. In view of the risk of pandemics, prophylactic and curative treatments are essential. Oseltamivir is a neuraminidase inhibitor efficiently supporting recovery from influenza infections. Current common clinical practice is a constant drug dose (75 or 150 mg) administered at regular time intervals twice a day. We aim to use quantitative systems pharmacology to propose an efficient adaptive drug scheduling. We combined the mathematical model for IAV infections validated by murine data, which captures the viral dynamics and the dynamics of the immune host response, with a pharmacokinetic (PK)/pharmacodynamic (PD) model of oseltamivir. Next, we applied an adaptive impulsive feedback control method to systematically calculate the adaptive dose of oseltamivir in dependence on the viral load and the number of immune effectors at the time of drug administration. Our in silico results revealed that the treatment with adaptive control-based drug scheduling is able to either increase the drug virological efficacy or reduce the drug dose while keeping the same virological efficacy. Thus, adaptive adjustment of the drug dose would reduce not only the potential side effects but also the amount of stored oseltamivir required for the prevention of outbreaks
    • …
    corecore