152 research outputs found

    X-ray Planning and Control in Gastrointestinal Stenting

    Get PDF
    Background. Self-expandable metal stents (SEMS) are widely used in gastrointestinal (GI) tract obstructive lesions. Planning and stent placement control can be performed with using roentgenological, endoscopic or combined method. The choice of the method depends on doctor’s preferences and clinic’s traditions, but endoscopic one is used more often. Comparison of the above methods efficacy in a single-institution material was not found in the literature. Objective: to compare clinical and roentgenological results of GI stenting depending on the method used. Material and methods. In 2016–2021, 267 cases of GI stenting were performed in Botkin Municipal Clinical Hospital. In 70 (26%) of them an endoscopic method was used, in 97 (36%) – a roentgenological one, and in 100 (37%) – a combined one. All patients underwent X-ray control postop. Results were analyzed statistically. Results. The implementation of X-ray diagnostics solo or in combination with endoscopy in GI SEMS planning and placement provided better results in comparison with endoscopic method only. Total SEMS expansion was achieved in 99% of cases versus 79% after only endoscopic procedures, correct stent placement – in 98% and 75%, respectively, evacuation was restored in 98% and 70%, respectively. All differences were statistically significant (p < 0.001). It is evident that X-ray methods are not useful for preliminary marking in decompensated patients with GI stenosis. But after elimination of such cases from analysis, the difference between the groups remained statistically significant (p < 0.05). Conclusion. The data obtained substitute expediency of X-ray method solo or with endoscopic one. Significant improvement of the results can be referred to more exact preoperative selection of SEMS type and size with X-ray method

    A Review of NEST Models, and Their Application to Improvement of Particle Identification in Liquid Xenon Experiments

    Full text link
    Liquid xenon is a leader in rare-event physics searches. Accurate modeling of charge and light production is key for simulating signals and backgrounds in this medium. The signal- and background-production models in the Noble Element Simulation Technique (NEST) are presented. NEST is a simulation toolkit based on experimental data, fit using simple, empirical formulae for the average charge and light yields and their variations. NEST also simulates the final scintillation pulses and exhibits the correct energy resolution as a function of the particle type, the energy, and the electric fields. After vetting of NEST against raw data, with several specific examples pulled from XENON, ZEPLIN, LUX/LZ, and PandaX, we interpolate and extrapolate its models to draw new conclusions on the properties of future detectors (e.g., XLZD's), in terms of the best possible discrimination of electron(ic) recoil backgrounds from a potential nuclear recoil signal, especially WIMP dark matter. We discover that the oft-quoted value of 99.5% discrimination is overly conservative, demonstrating that another order of magnitude improvement (99.95% discrimination) can be achieved with a high photon detection efficiency (g1 ~ 15-20%) at reasonably achievable drift fields of 200-350 V/cm.Comment: 24 Pages, 6 Tables, 15 Figures, and 15 Equation

    Hybrid nanoparticles based on sulfides, oxides, and carbides

    Full text link
    The methods for synthesis of hybrid nanoparticles based on sulfides, oxides, and carbides of heavy and transition metals were considered. The problem of the influence of the method of synthesis of the hybrid nanoparticles on their atomic structure, morphology of the nanomaterials, and functional properties was analyzed. The areas of practical use of the hybrid nanoparticles were proposed. © 2013 Springer Science+Business Media New York

    CRF-Like Diuretic Hormone Negatively Affects Both Feeding and Reproduction in the Desert Locust, Schistocerca gregaria

    Get PDF
    Diuretic hormones (DH) related to the vertebrate Corticotropin Releasing Factor (CRF) have been identified in diverse insect species. In the migratory locust, Locusta migratoria, the CRF-like DH (CRF/DH) is localized in the same neurosecretory cells as the Ovary Maturating Parsin (OMP), a neurohormone that stimulates oocyte growth, vitellogenesis and hemolymph ecdysteroid levels in adult female locusts. In this study, we investigated whether CRF-like DH can influence feeding and reproduction in the desert locust, Schistocerca gregaria. We identified two highly similar S. gregaria CRF-like DH precursor cDNAs, each of which also encodes an OMP isoform. Alignment with other insect CRF-like DH precursors shows relatively high conservation of the CRF/DH sequence while the precursor region corresponding to OMP is not well conserved. Quantitative real-time RT-PCR revealed that the precursor transcripts mainly occur in the central nervous system and their highest expression level was observed in the brain. Injection of locust CRF/DH caused a significantly reduced food intake, while RNAi knockdown stimulated food intake. Therefore, our data indicate that CRF-like DH induces satiety. Furthermore, injection of CRF/DH in adult females retarded oocyte growth and caused lower ecdysteroid titers in hemolymph and ovaries, while RNAi knockdown resulted in opposite effects. The observed effects of CRF/DH may be part of a wider repertoire of neurohormonal activities, constituting an integrating control system that affects food intake and excretion, as well as anabolic processes like oocyte growth and ecdysteroidogenesis, following a meal. Our discussion about the functional relationship between CRF/DH and OMP led to the hypothesis that OMP may possibly act as a monitoring peptide that can elicit negative feedback effects

    Search for Gravitational-wave Signals Associated with Gamma-Ray Bursts during the Second Observing Run of Advanced LIGO and Advanced Virgo

    Get PDF
    We present the results of targeted searches for gravitational-wave transients associated with gamma-ray bursts during the second observing run of Advanced LIGO and Advanced Virgo, which took place from 2016 November to 2017 August. We have analyzed 98 gamma-ray bursts using an unmodeled search method that searches for generic transient gravitational waves and 42 with a modeled search method that targets compact-binary mergers as progenitors of short gamma-ray bursts. Both methods clearly detect the previously reported binary merger signal GW170817, with p-values of <9.38 × 10−6 (modeled) and 3.1 × 10−4 (unmodeled). We do not find any significant evidence for gravitational-wave signals associated with the other gamma-ray bursts analyzed, and therefore we report lower bounds on the distance to each of these, assuming various source types and signal morphologies. Using our final modeled search results, short gamma-ray burst observations, and assuming binary neutron star progenitors, we place bounds on the rate of short gamma-ray bursts as a function of redshift for z ≤ 1. We estimate 0.07─1.80 joint detections with Fermi-GBM per year for the 2019─20 LIGO-Virgo observing run and 0.15─3.90 per year when current gravitational-wave detectors are operating at their design sensitivities

    Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease

    Get PDF
    Background: Experimental and clinical data suggest that reducing inflammation without affecting lipid levels may reduce the risk of cardiovascular disease. Yet, the inflammatory hypothesis of atherothrombosis has remained unproved. Methods: We conducted a randomized, double-blind trial of canakinumab, a therapeutic monoclonal antibody targeting interleukin-1β, involving 10,061 patients with previous myocardial infarction and a high-sensitivity C-reactive protein level of 2 mg or more per liter. The trial compared three doses of canakinumab (50 mg, 150 mg, and 300 mg, administered subcutaneously every 3 months) with placebo. The primary efficacy end point was nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death. RESULTS: At 48 months, the median reduction from baseline in the high-sensitivity C-reactive protein level was 26 percentage points greater in the group that received the 50-mg dose of canakinumab, 37 percentage points greater in the 150-mg group, and 41 percentage points greater in the 300-mg group than in the placebo group. Canakinumab did not reduce lipid levels from baseline. At a median follow-up of 3.7 years, the incidence rate for the primary end point was 4.50 events per 100 person-years in the placebo group, 4.11 events per 100 person-years in the 50-mg group, 3.86 events per 100 person-years in the 150-mg group, and 3.90 events per 100 person-years in the 300-mg group. The hazard ratios as compared with placebo were as follows: in the 50-mg group, 0.93 (95% confidence interval [CI], 0.80 to 1.07; P = 0.30); in the 150-mg group, 0.85 (95% CI, 0.74 to 0.98; P = 0.021); and in the 300-mg group, 0.86 (95% CI, 0.75 to 0.99; P = 0.031). The 150-mg dose, but not the other doses, met the prespecified multiplicity-adjusted threshold for statistical significance for the primary end point and the secondary end point that additionally included hospitalization for unstable angina that led to urgent revascularization (hazard ratio vs. placebo, 0.83; 95% CI, 0.73 to 0.95; P = 0.005). Canakinumab was associated with a higher incidence of fatal infection than was placebo. There was no significant difference in all-cause mortality (hazard ratio for all canakinumab doses vs. placebo, 0.94; 95% CI, 0.83 to 1.06; P = 0.31). Conclusions: Antiinflammatory therapy targeting the interleukin-1β innate immunity pathway with canakinumab at a dose of 150 mg every 3 months led to a significantly lower rate of recurrent cardiovascular events than placebo, independent of lipid-level lowering. (Funded by Novartis; CANTOS ClinicalTrials.gov number, NCT01327846.

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Comparison of Infectious Agents Susceptibility to Photocatalytic Effects of Nanosized Titanium and Zinc Oxides: A Practical Approach

    Get PDF
    corecore