7 research outputs found

    Classification of Mammogram Images by Using SVM and KNN

    Get PDF
    Breast cancer is a fairly diverse illness that affects a large percentage of women in the west. A mammogram is an X-ray-based evaluation of a woman's breasts to see if she has cancer. One of the earliest prescreening diagnostic procedures for breast cancer is mammography. It is well known that breast cancer recovery rates are significantly increased by early identification. Mammogram analysis is typically delegated to skilled radiologists at medical facilities. Human mistake, however, is always a possibility. Fatigue of the observer can commonly lead to errors, resulting in intraobserver and interobserver variances. The image quality affects the sensitivity of mammographic screening as well. The goal of developing automated techniques for detection and grading of breast cancer images is to reduce various types of variability and standardize diagnostic procedures. The classification of breast cancer images into benign (tumor increasing, but not harmful) and malignant (cannot be managed, it causes death) classes using a two-way classification algorithm is shown in this study. The two-way classification data mining algorithms are utilized because there are not many abnormal mammograms. The first classification algorithm, k-means, divides a given dataset into a predetermined number of clusters. Support Vector Machine (SVM), a second classification algorithm, is used to identify the optimal classification function to separate members of the two classes in the training dat

    AI is a viable alternative to high throughput screening: a 318-target study

    Get PDF
    : High throughput screening (HTS) is routinely used to identify bioactive small molecules. This requires physical compounds, which limits coverage of accessible chemical space. Computational approaches combined with vast on-demand chemical libraries can access far greater chemical space, provided that the predictive accuracy is sufficient to identify useful molecules. Through the largest and most diverse virtual HTS campaign reported to date, comprising 318 individual projects, we demonstrate that our AtomNetÂź convolutional neural network successfully finds novel hits across every major therapeutic area and protein class. We address historical limitations of computational screening by demonstrating success for target proteins without known binders, high-quality X-ray crystal structures, or manual cherry-picking of compounds. We show that the molecules selected by the AtomNetÂź model are novel drug-like scaffolds rather than minor modifications to known bioactive compounds. Our empirical results suggest that computational methods can substantially replace HTS as the first step of small-molecule drug discovery

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Estimation of Calcium and Iron Levels in Gingival Crevicular Fluid and Serum in Periodontal Health and Disease

    No full text
    Introduction: Gingival Crevicular Fluid (GCF) has been referred to as a promising medium for detection of markers for periodontal disease activity. Analysis of GCF shows minute changes in biomarker levels well before the onset of clinical signs and symptoms; which helps to even predict a person’s predisposition towards periodontal disease occurrence. The elemental analysis of human blood serum is noteworthy in routine clinical practice as well as in medical research. Aim: This study was done to determine the changes in calcium and iron levels in GCF and serum in human subjects with normal periodontal health and those with disease. Materials and Methods: This was a cross-sectional study conducted from March 2019 to December 2019. Eight study subjects (four healthy subjects and four periodontitis cases) were selected from the patients reporting to the Department of Periodontics at Tagore Dental College and Hospital, Chennai. The subjects were chosen based on inclusion and exclusion criteria and all patients were subjected to a clinical examination wherein the Probing Depth (PD) and Clinical Attachment Level (CAL) were recorded by a single examiner using William’s Periodontal probe. The GCF samples were collected by Capillary Tubing method. Blood was collected by venipuncture and centrifuged to provide serum samples. Dual viewing Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) was used to estimate Calcium and Iron in GCF and serum. SPSS version 21.0 was used for statistical analysis. Mann Whitney U test was used for comparing the groups. A p-value less than 0.05 was considered statistically significant. Results: Serum iron levels were significantly less in periodontitis patients than healthy subjects (p-value 0.043). GCF iron level (p-value 0.386), GCF calcium level (p-value 0.149) and serum calcium level (p-value 0.564) did not show any major variation among subjects with normal periodontal health and those with disease. Conclusion: The findings of this study showed that iron and calcium are present in GCF and serum samples of healthy persons and patients with chronic periodontitis which can be detected using ICP-OES. A significant difference in serum iron levels between health and disease could indicate a patient’s predisposition towards developing periodontitis. Calcium levels in GCF and serum do not point towards periodontal disease activity

    Multi-Omics Investigation of Innate Navitoclax Resistance in Triple-Negative Breast Cancer Cells

    No full text
    Cancer cells employ various defense mechanisms against drug-induced cell death. Investigating multi-omics landscapes of cancer cells before and after treatment can reveal resistance mechanisms and inform new therapeutic strategies. We assessed the effects of navitoclax, a BCL2 family inhibitor, on the transcriptome, methylome, chromatin structure, and copy number variations of MDA-MB-231 triple-negative breast cancer (TNBC) cells. Cells were sampled before treatment, at 72 h of exposure, and after 10-day drug-free recovery from treatment. We observed transient alterations in the expression of stress response genes that were accompanied by corresponding changes in chromatin accessibility. Most of these changes returned to baseline after the recovery period. We also detected lasting alterations in methylation states and genome structure that suggest permanent changes in cell population composition. Using single-cell analyses, we identified 2350 genes significantly upregulated in navitoclax-resistant cells and derived an 18-gene navitoclax resistance signature. We assessed the navitoclax-response-predictive function of this signature in four additional TNBC cell lines in vitro and in silico in 619 cell lines treated with 251 different drugs. We observed a drug-specific predictive value in both experiments, suggesting that this signature could help guiding clinical biomarker studies involving navitoclax

    Herbal approaches to system dysfunctions

    No full text

    Effect of Antiplatelet Therapy on Survival and Organ Support–Free Days in Critically Ill Patients With COVID-19

    No full text
    International audienc
    corecore