120 research outputs found

    Inclusion into PLGA nanoparticles greatly improves the effectiveness of \u3b1-bisabolol to inhibit human Dendritic Cell pro-inflammatory activity

    Get PDF
    a-bisabolol, a natural sesquiterpene alcohol, has generated considerable interest for its antiinflammatory activity. Since the mechanisms of this anti-inflammatory action remain poorly understood, we investigated whether a-bisabolol affects the release of pro-inflammatory cytokines IL-12, IL-23, IL-6, and TNFa by human dendritic cells (DCs). We found that a-bisabolol did not induce the secretion of these cytokines and did not affect their release induced upon DC challenge with lipopolysaccharide (LPS), a well-known immune cell stimulator. As a-bisabolol is scarcely ingested by the cells, we wondered hether the inclusion of a-bisabolol into nanoparticles could favor its internalization by DCs and consequently its effects on cytokine secretion. We then prepared and characterized poly(lactic-co-glycolic acid) (PLGA) nanoparticles, with a dynamic light scattering peak centered at 154 nm and a half width at half maximum of about 48 nm. These particles were unable to affect per se cytokine secretion by both resting and LPS stimulated DCs and were internalized by human DCs as demonstrated by confocal microscopy analysis. We then loaded PLGA nanoparticles with a-bisabolol and we observed that PLGA-associated a-bisabolol did not stimulate the cytokine release by resting DCs, but decreased IL-12, IL-23, IL-6, and TNFa secretion by LPS-stimulated DCs. Our results indicate that abisabolol inclusion into PLGA anoparticles represents a very promising tool for designing new antiinflammatory, anti-pyretic and, possibly, immunosuppressive therapeutic strategie

    Proliferation and survival of human amniotic epithelial cells during their hepatic differentiation

    Get PDF
    Stem cells derived from placental tissues are an attractive source of cells for regenerative medicine. Amniotic epithelial cells isolated from human amnion (hAECs) have desirable and competitive characteristics that make them stand out between other stem cells. They have the ability to differentiate toward all three germ layers, they are not tumorigenic and they have immunosuppressive properties. Although liver transplantation is the best way to treat acute and chronic hepatic failure patients, there are several obstacles. Recently, stem cells have been spotlighted as alternative source of hepatocytes because of their potential for hepatogenic differentiation. In this work, we aimed to study the proliferation and survival of the hAECs during their hepatic differentiation. We have also analyzed the changes in pluripotency and hepatic markers. We differentiated amniotic cells applying a specific hepatic differentiation (HD) protocol. We determined by qRT-PCR that hAECs express significant levels of SOX-2, OCT-4 and NANOG during at least 15 days in culture and these pluripotent markers diminish during HD. SSEA-4 expression was reduced during HD, measured by immunofluorescence. Morphological characteristics became more similar to hepatic ones in differentiated cells and representative hepatic markers significantly augmented their expression, measured by qRT-PCR and Western blot. Cells achieved a differentiation efficiency of 75%. We observed that HD induced proliferation and promoted survival of hAECs, during 30 days in culture, evaluated by 3H-thymidine incorporation and MTT assay. HD also promoted changes in hAECs cell cycle. Cyclin D1 expression increased, while p21 and p53 levels were reduced. Immunofluorescence analysis showed that Ki-67 expression was upregulated during HD. Finally, ERK 1/2 phosphorylation, which is intimately linked to proliferation and cell survival, augmented during all HD process and the inhibition of this signaling pathway affected not only proliferation but also differentiation. Our results suggest that HD promotes proliferation and survival of hAECs, providing important evidence about the mechanisms governing their hepatic differentiation. We bring new knowledge concerning some of the optimal transplantation conditions for these hepatic like cells.Fil: Maymo, Julieta Lorena. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Riedel, Rodrigo Nicolas. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Pérez Alcåzar, Germån Antonio. Hospital Universitario Virgen Macarena;Fil: Magatti, Marta. Istituto Ospedaliero;Fil: Maskin, Bernardo. Hospital Nacional Professor Dr. Alejandro Posadas; ArgentinaFil: Dueñas, José Luis. Hospital Universitario Virgen Macarena;Fil: Parolini, Ornella. Istituto Ospedaliero;Fil: Sånchez-Margalet, Víctor. Hospital Universitario Virgen Macarena;Fil: Varone, Cecilia Laura. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentin

    Low frequency view of GRB 190114C reveals time varying shock micro-physics

    Get PDF
    We present radio and optical afterglow observations of the TeV-bright long Gamma Ray Burst (GRB) 190114C at a redshift of z=0.425z=0.425, which was detected by the MAGIC telescope. Our observations with ALMA, ATCA, and uGMRT were obtained by our low frequency observing campaign and range from ∌1\sim1 to ∌140\sim140 days after the burst and the optical observations were done with three optical telescopes spanning up to ∌25\sim25 days after the burst. Long term radio/mm observations reveal the complex nature of the afterglow, which does not follow the spectral and temporal closure relations expected from the standard afterglow model. We find that the microphysical parameters of the external forward shock, representing the share of shock-created energy in the non-thermal electron population and magnetic field, are evolving with time. The inferred kinetic energy in the blast-wave depends strongly on the assumed ambient medium density profile, with a constant density medium demanding almost an order of magnitude higher energy than in the prompt emission, while a stellar wind-driven medium requires approximately the same amount energy as in prompt emission.Comment: MNRAS, in press, expanded after referee report, 19 pages, 15 figures, 6 table

    Observation of inverse Compton emission from a long Îł-ray burst.

    Get PDF
    Long-duration γ-ray bursts (GRBs) originate from ultra-relativistic jets launched from the collapsing cores of dying massive stars. They are characterized by an initial phase of bright and highly variable radiation in the kiloelectronvolt-to-megaelectronvolt band, which is probably produced within the jet and lasts from milliseconds to minutes, known as the prompt emission1,2. Subsequently, the interaction of the jet with the surrounding medium generates shock waves that are responsible for the afterglow emission, which lasts from days to months and occurs over a broad energy range from the radio to the gigaelectronvolt bands1-6. The afterglow emission is generally well explained as synchrotron radiation emitted by electrons accelerated by the external shock7-9. Recently, intense long-lasting emission between 0.2 and 1 teraelectronvolts was observed from GRB 190114C10,11. Here we report multi-frequency observations of GRB 190114C, and study the evolution in time of the GRB emission across 17 orders of magnitude in energy, from 5 × 10-6 to 1012 electronvolts. We find that the broadband spectral energy distribution is double-peaked, with the teraelectronvolt emission constituting a distinct spectral component with power comparable to the synchrotron component. This component is associated with the afterglow and is satisfactorily explained by inverse Compton up-scattering of synchrotron photons by high-energy electrons. We find that the conditions required to account for the observed teraelectronvolt component are typical for GRBs, supporting the possibility that inverse Compton emission is commonly produced in GRBs

    The management of acute venous thromboembolism in clinical practice. Results from the European PREFER in VTE Registry

    Get PDF
    Venous thromboembolism (VTE) is a significant cause of morbidity and mortality in Europe. Data from real-world registries are necessary, as clinical trials do not represent the full spectrum of VTE patients seen in clinical practice. We aimed to document the epidemiology, management and outcomes of VTE using data from a large, observational database. PREFER in VTE was an international, non-interventional disease registry conducted between January 2013 and July 2015 in primary and secondary care across seven European countries. Consecutive patients with acute VTE were documented and followed up over 12 months. PREFER in VTE included 3,455 patients with a mean age of 60.8 ± 17.0 years. Overall, 53.0 % were male. The majority of patients were assessed in the hospital setting as inpatients or outpatients (78.5 %). The diagnosis was deep-vein thrombosis (DVT) in 59.5 % and pulmonary embolism (PE) in 40.5 %. The most common comorbidities were the various types of cardiovascular disease (excluding hypertension; 45.5 %), hypertension (42.3 %) and dyslipidaemia (21.1 %). Following the index VTE, a large proportion of patients received initial therapy with heparin (73.2 %), almost half received a vitamin K antagonist (48.7 %) and nearly a quarter received a DOAC (24.5 %). Almost a quarter of all presentations were for recurrent VTE, with >80 % of previous episodes having occurred more than 12 months prior to baseline. In conclusion, PREFER in VTE has provided contemporary insights into VTE patients and their real-world management, including their baseline characteristics, risk factors, disease history, symptoms and signs, initial therapy and outcomes

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms

    Orientational Effects and Random Mixing in 1‑Alkanol + Nitrile Mixtures

    Get PDF
    1-Alkanol + alkanenitrile or + benzonitrile systems have been investigated by means of the molar excess functionsenthalpies (Hm E ), isobaric heat capacities (Cp,m E ), volumes (Vm E ), and entropiesand using the Flory model and the concentration−concentration structure factor (SCC(0)) formalism. From the analysis of the experimental data available in the literature, it is concluded that interactions are mainly of dipolar type. In addition, large Hm E values contrast with rather low Vm E values, indicating the existence of strong structural effects. Hm E measurements have been used to evaluate the enthalpy of the hydroxyl−nitrile interactions (ΔHOH−CN). They are stronger in methanol systems and become weaker when the alcohol size increases. In solutions with a given short chain 1-alkanol (up to 1-butanol), the replacement of ethanenitrile by butanenitrile weakens the mentioned interactions. Application of the Flory model shows that orientational effects exist in methanol or 1- nonanol, or 1-decanol + ethanenitrile mixtures. In the former solution, this is due to the existence of interactions between unlike molecules. For mixtures including 1-nonanol or 1-decanol, the systems at 298.15 K are close to their UCST (upper critical solution temperature), and interactions between like molecules are dominant. Orientational effects also are encountered in methanol or ethanol + butanenitrile mixtures because self-association of the alcohol plays a more important role. Aromaticity effect seems to enhance orientational effects. For the remainder of the systems under consideration, the random mixing hypothesis is attained to a rather large extent. Results from the application of the SCC(0) formalism show that homocoordination is the dominant trend in the investigated solutions, and are consistent with those obtained from the Flory model

    Multi-messenger Observations of a Binary Neutron Star Merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ∌ 1.7 {{s}} with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of {40}-8+8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 {M}ÈŻ . An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ∌ 40 {{Mpc}}) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ∌10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ∌ 9 and ∌ 16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC 4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta.</p
    • 

    corecore