

LJMU Research Online

MAGIC Collaboration, Veres, P, Bhat, PN, Briggs, MS, Cleveland, WH, Hamburg, R, Hui, CM, Mailyan, B, Preece, RD, Roberts, OJ, von Kienlin, A, Wilson-Hodge, CA, Kocevski, D, Arimoto, M, Tak, D, Asano, K, Axelsson, M, Barbiellini, G, Bissaldi, E, Dirirsa, FF, Gill, R, Granot, J, McEnery, J, Omodei, N, Razzaque, S, Piron, F, Racusin, JL, Thompson, DJ, Campana, S, Bernardini, MG, Kuin, NPM, Siegel, MH, Cenko, SB, O'Brien, P, Capalbi, M, Daì, A, De Pasquale, M, Gropp, J, Klingler, N, Osborne, JP, Perri, M, Starling, RLC, Tagliaferri, G, Tohuvavohu, A, Ursi, A, Tavani, M, Cardillo, M, Casentini, C, Piano, G, Evangelista, Y, Verrecchia, F, Pittori, C, Lucarelli, F, Bulgarelli, A, Parmiggiani, N, Anderson, GE, Anderson, JP, Bernardi, G, Bolmer, J, Caballero-García, MD, Carrasco, IM, Castellón, A, Segura, NC, Castro-Tirado, AJ, Cherukuri, SV, Cockeram, AM, D'Avanzo, P, Di Dato, A, Diretse, R, Fender, RP, Fernández-García, E, Fynbo, JPU, Fruchter, AS, Greiner, J, Gromadzki, M, Heintz, KE, Heywood, I, van der Horst, AJ, Hu, Y-D, Inserra, C, Izzo, L, Jaiswal, V, Jakobsson, P, Japelj, J, Kankare, E, Kann, DA, Kouveliotou, C, Klose, S, Levan, AJ, Li, XY, Lotti, S, Maguire, K, Malesani, DB, Manulis, I, Marongiu, M, Martin, S, Melandri, A, Michałowski, MJ, Miller-Jones, JCA, Misra, K, Moin, A, Mooley, KP, Nasri, S, Nicholl, M, Noschese, A, Novara, G, Pandey, SB, Peretti, E, Del Pulgar, CJP, Pérez-Torres, MA, Perley, DA, Piro, L, Ragosta, F, Resmi, L, Ricci, R, Rossi, A, Sánchez-Ramírez, R, Selsing, J, Schulze, S, Smartt, SJ, Smith, IA, Sokolov, VV, Stevens, J, Tanvir, NR, Thöne, CC, Tiengo, A, Tremou, E, Troja, E, de Ugarte Postigo, A, Valeev, AF, Vergani, SD, Wieringa, M, Woudt, PA, Xu, D, Yaron, O and Young, DR

Observation of inverse Compton emission from a long y-ray burst.

http://researchonline.ljmu.ac.uk/id/eprint/11814/

Article

Citation (please note it is advisable to refer to the publisher's version if you intend to cite from this work)

MAGIC Collaboration, , Veres, P, Bhat, PN, Briggs, MS, Cleveland, WH, Hamburg, R, Hui, CM, Mailyan, B, Preece, RD, Roberts, OJ, von Kienlin, A, Wilson-Hodge, CA, Kocevski, D, Arimoto, M, Tak, D, Asano, K, Axelsson, M, Barbiellini. G. Bissaldi. E. Dirirsa. FF. Gill. R. Granot. J. McEnerv. J. Omodei.

LJMU has developed LJMU Research Online for users to access the research output of the University more effectively. Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Users may download and/or print one copy of any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research. You may not engage in further distribution of the material or use it for any profit-making activities or any commercial gain.

The version presented here may differ from the published version or from the version of the record. Please see the repository URL above for details on accessing the published version and note that access may require a subscription.

For more information please contact researchonline@ljmu.ac.uk

Observation of Inverse Compton emission from a gamma ray burst

3	V. A. Acciari ¹ , S. Ansoldi ^{2,3} , L. A. Antonelli ⁴ , A. Arbet Engels ⁵ , D. Baack ⁶ , A. Babić ⁷ ,
4	B. Banerjee ⁸ , U. Barres de Almeida ⁹ , J. A. Barrio ¹⁰ , J. Becerra González ¹ , W. Bednarek ¹¹ ,
5	L. Bellizzi ¹² , E. Bernardini ^{13,14} , A. Berti ¹⁵ , J. Besenrieder ¹⁷ , W. Bhattacharyya ¹³ , C. Bigongiari ⁴ ,
6	A. Biland ⁵ , O. Blanch ¹⁶ , G. Bonnoli ¹² , Ž. Bošnjak ⁷ , G. Busetto ¹⁴ , R. Carosi ²⁰ , G. Ceribella ¹⁷ ,
7	Y. Chai ¹⁷ , A. Chilingaryan ¹⁸ , S. Cikota ⁷ , S. M. Colak ¹⁶ , U. Colin ¹⁷ , E. Colombo ¹ , J. L. Contreras ¹⁰ ,
8	J. Cortina ¹⁹ , S. Covino ⁴ , V. D'Elia ⁴ , P. Da Vela ²⁰ , F. Dazzi ⁴ , A. De Angelis ¹⁴ , B. De Lotto ² ,
9	M. Delfino ^{16,21} , J. Delgado ^{16,21} , D. Depaoli ¹⁵ , F. Di Pierro ¹⁵ , L. Di Venere ¹⁵ , E. Do Souto
10	Espiñeira ¹⁶ , D. Dominis Prester ⁷ , A. Donini ² , D. Dorner ²² , M. Doro ¹⁴ , D. Elsaesser ⁶ , V. Fallah
11	Ramazani ²³ , A. Fattorini ⁶ , G. Ferrara ⁴ , D. Fidalgo ¹⁰ , L. Foffano ¹⁴ , M. V. Fonseca ¹⁰ , L. Font ²⁴ ,
12	C. Fruck ¹⁷ , S. Fukami ³ , R. J. García López ¹ , M. Garczarczyk ¹³ , S. Gasparyan ¹⁸ , M. Gaug ²⁴ ,
13	N. Giglietto ¹⁵ , F. Giordano ¹⁵ , N. Godinović ⁷ , D. Green ¹⁷ , D. Guberman ¹⁶ , D. Hadasch ³ ,
14	A. Hahn ¹⁷ , J. Herrera ¹ , J. Hoang ¹⁰ , D. Hrupec ⁷ , M. Hütten ¹⁷ , T. Inada ³ , S. Inoue ³ , K. Ishio ¹⁷ ,
15	Y. Iwamura ³ , L. Jouvin ¹⁶ , D. Kerszberg ¹⁶ , H. Kubo ³ , J. Kushida ³ , A. Lamastra ⁴ , D. Lelas ⁷ ,
16	F. Leone ⁴ , E. Lindfors ²³ , S. Lombardi ⁴ , F. Longo ^{2,25,26} , M. López ¹⁰ , R. López-Coto ¹⁴ ,
17	A. López-Oramas ¹ , S. Loporchio ¹⁵ , B. Machado de Oliveira Fraga ⁹ , C. Maggio ²⁴ , P. Majumdar ⁸ ,
18	M. Makariev ²⁷ , M. Mallamaci ¹⁴ , G. Maneva ²⁷ , M. Manganaro ⁷ , K. Mannheim ²² , L. Maraschi ⁴ ,
19	M. Mariotti ¹⁴ , M. Martínez ¹⁶ , D. Mazin ^{3,17} , S. Mićanović ⁷ , D. Miceli ² , M. Minev ²⁷ ,
20	J. M. Miranda ¹² , R. Mirzoyan ¹⁷ , E. Molina ²⁸ , A. Moralejo ¹⁶ , D. Morcuende ¹⁰ , V. Moreno ²⁴ ,
21	E. Moretti ¹⁶ , P. Munar-Adrover ²⁴ , V. Neustroev ²³ , C. Nigro ¹³ , K. Nilsson ²³ , D. Ninci ¹⁶ ,

22	K. Nishijima ³ , K. Noda ³ , L. Nogués ¹⁶ , S. Nozaki ³ , S. Paiano ¹⁴ , M. Palatiello ² , D. Paneque ¹⁷ ,
23	R. Paoletti ¹² , J. M. Paredes ²⁸ , P. Peñil ¹⁰ , M. Peresano ² , M. Persic ² , P. G. Prada Moroni ²⁰ ,
24	E. Prandini ¹⁴ , I. Puljak ⁷ , W. Rhode ⁶ , M. Ribó ²⁸ , J. Rico ¹⁶ , C. Righi ⁴ , A. Rugliancich ²⁰ , L. Saha ¹⁰ ,
25	N. Sahakyan ¹⁸ , T. Saito ³ , S. Sakurai ³ , K. Satalecka ¹³ , K. Schmidt ⁶ , T. Schweizer ¹⁷ , J. Sitarek ¹¹ ,
26	I. Šnidarić ⁷ , D. Sobczynska ¹¹ , A. Somero ¹ , A. Stamerra ⁴ , D. Strom ¹⁷ , M. Strzys ¹⁷ , Y. Suda ¹⁷ ,
27	T. Surić ⁷ , M. Takahashi ³ , F. Tavecchio ⁴ , P. Temnikov ²⁷ , T. Terzić ⁷ , M. Teshima ^{3,17} ,
28	N. Torres-Albà ²⁸ , L. Tosti ¹⁵ , V. Vagelli ¹⁵ , J. van Scherpenberg ¹⁷ , G. Vanzo ¹ , M. Vazquez Acosta ¹ ,
29	C. F. Vigorito ¹⁵ , V. Vitale ¹⁵ , I. Vovk ¹⁷ , M. Will ¹⁷ , D. Zarić ⁷
30	L. Nava ^{4,25,29} ,
31	P. Veres ³⁰ , P. N. Bhat ³⁰ , M. S. Briggs ^{30,31} , W. H. Cleveland ³² , R. Hamburg ^{30,31} , C. M. Hui ³³ ,
32	B. Mailyan ³⁰ , R. D. Preece ^{30,31} , O. Roberts ³² , A. von Kienlin ³⁴ , C. A. Wilson-Hodge ³³ ,
33	D. Kocevski ³³ , M. Arimoto ³⁵ , D. Tak ^{36,37} , K. Asano ³⁸ , M. Axelsson ^{39,40} , G. Barbiellini ²⁵ ,
34	E. Bissaldi ^{41,42} , R. Gill ⁴³ , J. Granot ⁴³ , J. McEnery ^{36,37} , N. Omodei ⁴⁴ , S. Razzaque ⁴⁵ , F. Piron ⁴⁶ ,
35	J. L. Racusin ³⁷ , D. J. Thompson ³⁷ ,
36	S. Campana ⁴⁷ , M. G. Bernardini ⁴⁷ , N. P. M. Kuin ⁴⁸ , M. H. Siegel ⁴⁹ , S. Bradley Cenko ^{37,50} , P.
37	OBrien ⁵¹ , M. Capalbi ⁵² , A. DAì ⁵² , M. De Pasquale ⁵³ , J. Gropp ⁴⁹ , N. Klingler ⁴⁹ , J. P. Osborne ⁵¹ ,
38	M. Perri ^{54,55} , R. Starling ⁵¹ , G. Tagliaferri ^{47,52} , A. Tohuvavohu ⁴⁹ ,
39	A. Ursi ⁵⁶ , M. Tavani ^{56,57,58} , M. Cardillo ⁵⁶ , C. Casentini ⁵⁶ , G. Piano ⁵⁶ , Y. Evangelista ⁵⁶ ,
40	F. Verrecchia ^{54,55} , C. Pittori ^{54,55} , F. Lucarelli ^{54,55} , A. Bulgarelli ⁵⁵ , N. Parmiggiani ⁵⁵ ,

41	G. E. Anderson ⁵⁹ , J. P. Anderson ⁶⁰ , G. Bernardi ^{61,62,63} , J. Bolmer ³⁴ , M. D. Caballero-García ⁶⁴ ,
42	I. M. Carrasco ⁶⁵ , A. Castellón ⁶⁶ , N. Castro Segura ⁶⁷ , A. J. Castro-Tirado ^{68,69} , S. V. Cherukuri ⁷⁰ ,
43	A. M. Cockeram ⁷¹ , P. D'Avanzo ⁴⁷ , A. Di Dato ^{72,73} , R. Diretse ⁷⁴ , R.P. Fender ⁷⁵ ,
44	E. Fernández-García ⁶⁹ , J. P. U. Fynbo ^{76,77} , A.S. Fruchter ⁷⁸ J. Greiner ³⁴ , M. Gromadzki ⁷⁹ , K.E.
45	Heintz ⁸⁰ I. Heywood ^{62,75} , A.J. van der Horst ^{81,82} , YD. Hu ^{69,83} , C. Inserra ⁸⁴ , L. Izzo ^{69,85} ,
46	V. Jaiswal ⁷⁰ , P. Jakobsson ⁸⁰ , J. Japelj ⁸⁶ , E. Kankare ⁸⁷ , D. A. Kann ⁶⁹ , C. Kouveliotou ^{81,82} ,
47	S. Klose ⁸⁸ , A. J. Levan ⁸⁹ , X. Y. Li ^{90,91} , S. Lotti ⁵⁶ , K. Maguire ⁹² , D. B. Malesani ^{76,77,85,93} ,
48	I. Manulis ⁹⁴ , M. Marongiu ^{95,96} , S. Martin ^{60,97} , A. Melandri ⁴⁷ , M. Michałowski ⁹⁸ ,
49	J.C.A. Miller-Jones ⁵⁹ , K. Misra ^{99,100} , A. Moin ¹⁰¹ , K.P. Mooley ^{102,103} , S. Nasri ¹⁰¹ ,
50	M. Nicholl ^{104,105} , A. Noschese ⁷² , G. Novara ^{106,107} , S. B. Pandey ⁹⁹ , E. Peretti ^{58,108} , C. J. Pérez del
51	Pulgar ⁶⁸ , M.A. Pérez-Torres ^{69,109} , D. A. Perley ⁷¹ , L. Piro ⁵⁶ , F. Ragosta ^{73,110,111} , L. Resmi ⁷⁰ ,
52	R. Ricci ⁶¹ A. Rossi ¹¹² , R. Sánchez-Ramírez ⁵⁶ , J. Selsing ⁷⁷ S. Schulze ¹¹³ , S. J. Smartt ¹¹⁴ ,
53	I. A. Smith ¹¹⁵ , V. V. Sokolov ¹¹⁶ , J. Stevens ¹¹⁷ , N. R. Tanvir ⁵¹ , C. C. Thóne ⁶⁹ , A. Tiengo ^{106,107,118} ,
54	E. Tremou ¹¹⁹ , E. Troja ^{37,120} , A. de Ugarte Postigo ^{69,85} , A. F. Valeev ¹¹⁶ , S. D. Vergani ¹²¹ ,
55	M. Wieringa ¹²² , P.A. Woudt ⁷⁴ , D. Xu ¹²³ , O. Yaron ⁹⁴ , D. R. Young ¹¹⁴
56	¹ Inst. de Astrofísica de Canarias, E-38200 La Laguna, and Universidad de La Laguna, Dpto

- 57 Astrofísica, E-38206 La Laguna, Tenerife, Spain
- ⁵⁸ ²Università di Udine, and INFN Trieste, I-33100 Udine, Italy

⁵⁹ ³Japanese MAGIC Consortium: ICRR, The University of Tokyo, 277-8582 Chiba, Japan; Depart-

- 60 ment of Physics, Kyoto University, 606-8502 Kyoto, Japan; Tokai University, 259-1292 Kanagawa,
- 61 Japan; RIKEN, 351-0198 Saitama, Japan

- ⁶² ⁴National Institute for Astrophysics (INAF), I-00136 Rome, Italy
- ⁶³ ⁵ETH Zurich, CH-8093 Zurich, Switzerland
- ⁶⁴ ⁶Technische Universität Dortmund, 44221 Dortmund, Germany
- ⁶⁵ ⁷Croatian Consortium: University of Rijeka, Department of Physics, 51000 Rijeka; University of
- ⁶⁶ Split FESB, 21000 Split; University of Zagreb FER, 10000 Zagreb; University of Osijek, 31000
- 67 Osijek; Rudjer Boskovic Institute, 10000 Zagreb, Croatia
- ⁶⁸ ⁸Saha Institute of Nuclear Physics, HBNI, 1/AF Bidhannagar, Salt Lake, Sector-1, Kolkata 700064,
- 69 India
- ⁷⁰ ⁹Centro Brasileiro de Pesquisas Físicas (CBPF), 22290-180 URCA, Rio de Janeiro (RJ), Brasil
- ⁷¹ ¹⁰Unidad de Partículas y Cosmología (UPARCOS), Universidad Complutense, E-28040 Madrid,
- 72 Spain
- ⁷³ ¹¹University of Lodz, Faculty of Physics and Applied Informatics, Department of Astrophysics,
- 74 90-236 Lodz, Poland
- ⁷⁵ ¹²Università di Siena and INFN Pisa, I-53100 Siena, Italy
- ⁷⁶ ¹³Deutsches Elektronen-Synchrotron (DESY), 15738 Zeuthen, Germany
- ⁷⁷ ¹⁴Università di Padova and INFN, I-35131 Padova, Italy
- ⁷⁸ ¹⁵ Istituto Nazionale Fisica Nucleare (INFN), 00044 Frascati (Roma) Italy
- ⁷⁹ ¹⁶Institut de Física d'Altes Energies (IFAE), The Barcelona Institute of Science and Technology
- 80 (BIST), E-08193 Bellaterra (Barcelona), Spain
- ⁸¹ ¹⁷ Max-Planck-Institut für Physik, 80805 München, Germany
- ⁸² ¹⁸ The Armenian Consortium: ICRANet-Armenia at NAS RA, A. Alikhanyan National Laboratory

- ⁸³ ¹⁹Centro de Investigaciones Energticas, Medioambientales y Tecnolgicas, E-28040 Madrid, Spain
- ⁸⁴ ²⁰Università di Pisa, and INFN Pisa, I-56126 Pisa, Italy
- ⁸⁵ ²¹also at Port d'Informació Científica (PIC) E-08193 Bellaterra (Barcelona) Spain
- ⁸⁶ ²²Universität Würzburg, 97074 Würzburg, Germany
- ⁸⁷ ²³Finnish MAGIC Consortium: Finnish Centre of Astronomy with ESO (FINCA), University of
- ⁸⁸ Turku, FI-20014 Turku, Finland; Astronomy Research Unit, University of Oulu, F90014 Oulu,
- 89 Finland
- ⁹⁰ ²⁴Departament de Física, and CERES-IEEC, Universitat Autònoma de Barcelona, E-08193 Bel-
- 91 laterra, Spain
- ⁹² ²⁵ Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, 34149 Trieste, Italy
- ²⁶also at Dipartimento di Fisica, Università di Trieste, 34127 Trieste, Italy
- ⁹⁴ ²⁷Inst. for Nucl. Research and Nucl. Energy, Bulgarian Academy of Sciences, BG-1784 Sofia,
 ⁹⁵ Bulgaria
- ⁹⁶ ²⁸ Universitat de Barcelona, ICCUB, IEEC-UB, E-08028 Barcelona, Spain
- ⁹⁷ ²⁹Institute for Fundamental Physics of the Universe (IFPU), 34151 Trieste, Italy
- ⁹⁸ ³⁰Center for Space Plasma and Aeronomic Research, University of Alabama in Huntsville, 320
- ⁹⁹ Sparkman Drive, Huntsville, AL 35899, USA
- ³¹Space Science Department, University of Alabama in Huntsville, 320 Sparkman Drive,
 Huntsville, AL 35899, USA
- ³²Science and Technology Institute, Universities Space Research Association, Huntsville, AL
 ³⁵⁸⁰⁵, USA

- ³³Astrophysics Office, ST12, NASA/Marshall Space Flight Center, Huntsville, AL 35812, USA
- ³⁴Max-Planck Institut f
 ür extraterrestrische Physik, Giessenbachstraße 1, 85748 Garching, Ger many
- ¹⁰⁷ ³⁵ Faculty of Mathematics and Physics, Institute of Science and Engineering, Kanazawa University,
- 108 Kakuma, Kanazawa, Ishikawa 920-1192
- ¹⁰⁹ ³⁶Department of Physics, University of Maryland, College Park, MD 20742-4111, USA
- ³⁷Astrophysics Science Division, NASA Goddard Space Flight Center, 8800 Greenbelt Rd, Green belt, MD 20771, USA
- ¹¹² ³⁸Institute for Cosmic-Ray Research, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba,
- 113 277-8582, Japan
- ³⁹Department of Physics, Stockholm University, AlbaNova, SE-106 91 Stockholm, Sweden
- ⁴⁰Department of Physics, KTH Royal Institute of Technology, AlbaNova, SE-106 91 Stockholm,
 Sweden
- ⁴¹Dipartimento di Fisica "M. Merlin" dell'Università e del Politecnico di Bari, 70126 Bari, Italy
- ⁴²Istituto Nazionale di Fisica Nucleare, Sezione di Bari, 70126 Bari, Italy
- ⁴³Department of Natural Sciences, Open University of Israel, 1 University Road, POB 808,
 Ra'anana 43537, Israel
- ⁴⁴W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and
- 122 Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford Univer-
- 123 sity, Stanford, CA 94305, USA
- ⁴⁵Department of Physics, University of Johannesburg, PO Box 524, Auckland Park 2006, South

- 125 Africa
- ⁴⁶Laboratoire Univers et Particules de Montpellier, Université Montpellier, CNRS/IN2P3, F-34095
- ¹²⁷ Montpellier, France
- ⁴⁷INAF Astronomical Observatory of Brera, I-23807 Merate (LC), Italy
- ⁴⁸Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking,
- 130 RH5 6NT, United Kingdom
- ⁴⁹Department of Astronomy and Astrophysics, Pennsylvania State University. 525 Davey Labora-
- 132 tory, University Park, PA 16802, USA
- ¹³³ ⁵⁰ Joint Space-Science Institute, University of Maryland, College Park, Maryland 20742, USA
- ¹³⁴ ⁵¹Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1
- 135 7RH, UK
- ⁵²INAF Istituto di Astrofisica Spaziale e Fisica Cosmica di Palermo, via Ugo La Malfa 153, I 90146 Palermo, Italia
- ⁵³Department of Astronomy and Space Sciences, Istanbul University, Fatih, 34119, Istanbul,
 Turkey
- ¹⁴⁰ ⁵⁴INAF-Osservatorio Astronomico di Roma, Via Frascati 33, I-00078 Monteporzio Catone, Italy
- ¹⁴¹ ⁵⁵Space Science Data Center (SSDC), Agenzia Spaziale Italiana (ASI), via del Politecnico s.n.c.,
- 142 *I-00133*, Roma, Italy
- ¹⁴³ ⁵⁶ INAF-IAPS, via del Fosso del Cavaliere 100, I-00133 Roma, Italy
- ¹⁴⁴ ⁵⁷Univ. "Tor Vergata", Via della Ricerca Scientifica 1, I-00133 Roma, Italy
- ¹⁴⁵ ⁵⁸ Gran Sasso Science Institute, viale Francesco Crispi 7, I-67100 L'Aquila, Italy

- ⁵⁹International Centre for Radio Astronomy Research, Curtin University, GPO Box U1987, Perth,
- 147 WA 6845, Australia
- ⁶⁰European Southern Observatory, Alonso de Còrdova, 3107, Vitacura, Santiago 763-0355, Chile
- ¹⁴⁹ ⁶¹INAF-Istituto di Radioastronomia, via Gobetti 101, I-40129, Bologna, Italy
- ⁶²Department of Physics and Electronics, Rhodes University, PO Box 94, Grahamstown, 6140,
- 151 South Africa
- ⁶³South African Radio Astronomy Observatory, Black River Park, 2 Fir Street, Observatory, Cape
 Town, 7925, South Africa
- ⁶⁴Astronomical Institute of the Academy of Sciences, Boční II 1401, CZ-14100 Praha 4, Czech
- 155 Republic
- ¹⁵⁶ ⁶⁵ Departamento de Física Aplicada, Facultad de Ciencias, Universidad de Málaga, Bulevar Louis
- 157 Pasteur 31, E-29071 Málaga, Spain
- ¹⁵⁸ ⁶⁶Departamento de Álgebra, Geometría y Topología, Facultad de Ciencias, Bulevar Louis Pasteur
- 159 31, Universidad de Málaga, E-29071 Málaga, Spain
- ¹⁶⁰ ⁶⁷ Physics and Astronomy Department, University of Southampton, Southampton, UK
- ⁶⁸Unidad Asociada Departamento de Ingeniería de Sistemas y Automática, E.T.S. de Ingenieros
- ¹⁶² Industriales, Universidad de Málaga, Arquitecto Francisco Peñalosa 6, E-29071 Málaga, Spain
- ⁶⁹Instituto de Astrofísica de Andalucía (IAA-CSIC), Glorieta de la Astronomía, s/n, E-18008,
- 164 Granada, Spain
- ¹⁶⁵ ⁷⁰Indian Institute of Space Science & Technology, Trivandrum 695547, India
- ¹⁶⁶ ⁷¹Astrophysics Research Institute, Liverpool John Moores University, 146 Brownlow Hill, Liver-

- 167 pool L3 5RF, UK
- ⁷²Osservatorio Astronomico 'S. Di Giacomo' AstroCampania, I-80051, Agerola (NA), Italy
- ¹⁶⁹ ⁷³INAF Astronomical Observatory of Naples, I-23807 Naples (NA), Italy
- ⁷⁴Inter-University Institute for Data-Intensive Astronomy, Department of Astronomy, University
- ¹⁷¹ of Cape Town, Private Bag X3, Rondebosch 7701, South Africa
- ¹⁷² ⁷⁵Astrophysics, Department of Physics, University of Oxford, Keble Road, Oxford OX1 3RH, UK
- ¹⁷³ ⁷⁶Cosmic Dawn Center (DAWN)
- ¹⁷⁴ ⁷⁷Niels Bohr Institute, Copenhagen University, Vibenshuset, Lyngbyvej 2, DK-2100, Copenhagen
- ⁷⁸Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA
- ⁷⁹ Warsaw University Astronomical Observatory, Al. Ujazdowskie 4, PL-00- 478 Warszawa,
- 177 Poland
- ⁸⁰Centre for Astrophysics and Cosmology, Science Institute, University of Iceland, Dunhagi 5, 107
 Reykjavík, Iceland
- ⁸¹Department of Physics, The George Washington University, 725 21st Street NW, Washington,
 DC 20052, USA
- ⁸²Astronomy, Physics, and Statistics Institute of Sciences (APSIS), The George Washington Uni versity, Washington, DC 20052, USA
- ⁸³Universidad de Granada, Facultad de Ciencias Campus Fuentenueva S/N CP 18071 Granada,
 Spain
- ⁸⁴School of Physics & Astronomy, Cardiff University, Queens Buildings, The Parade, 25 Cardiff,
 CF24 3AA, UK

- ⁸⁵DARK, Niels Bohr Institute, University of Copenhagen, Lyngbyvej 2, DK-2100 Copenhagen Ø,
 Denmark
- ¹⁹⁰ ⁸⁶Anton Pannekoek Institute for Astronomy, University of Amsterdam, Science Park 904, 1098
- 191 XH Amsterdam, The Netherlands
- ⁸⁷Tuorla Observatory, Department of Physics and Astronomy, University of Turku, 20014 Turku,
 ^{Finland}
- ¹⁹⁴ ⁸⁸ Thüringer Landessternwarte Tautenburg, Sternwarte 5, 07778 Tautenburg, Germany
- ¹⁹⁵ ⁸⁹Department of Astrophysics/IMAPP, Radboud University Nijmegen, The Netherlands
- ⁹⁰Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora (IHSM/UMA-CSIC), Al-
- 197 garrobo Costa s/n, E-29750 Málaga, Spain
- ¹⁹⁸ ⁹¹Nanjing Institute for Astronomical Optics and Technology, National Observatories, Chinese
- ¹⁹⁹ Academy of Sciences, 188 Bancang St, Xuanwu Qu, Nanjing Shi, Jiangsu Sheng, China
- ²⁰⁰ ⁹²School of Physics, Trinity College Dublin, Dublin 2, Ireland
- ⁹³DTU Space, National Space Institute, Technical University of Denmark, Elektrovej 327, 2800
 Kongens Lyngby, Denmark
- ⁹⁴Benoziyo Center for Astrophysics, Weizmann Institute of Science, 76100 Rehovot, Israel
- ⁹⁵Department of Physics and Earth Science, University of Ferrara, via Saragat 1, I-44122, Ferrara,
 Italy
- ⁹⁶International Center for Relativistic Astrophysics Network (ICRANet), Piazzale della Repub ²⁰⁷ blica 10, I-65122, Pescara, Italy
- ⁹⁷Joint ALMA Observatory, Alonso de Còrdova, 3107, Vitacura, Santiago 763-0355, Chile

⁹⁸Astronomical Observatory Institute, Faculty of Physics, Adam Mickiewicz University,
 ²¹⁰ ul. Słoneczna 36, 60-286 Poznań, Poland

- ⁹⁹Aryabhatta Research Institute of Observational Sciences, Manora Peak, Nainital 263 001, India
- ²¹² ¹⁰⁰Department of Physics, University of California, 1 Shields Ave, Davis, CA 95616-5270, USA
- ²¹³ ¹⁰¹ Physics Department, United Arab Emirates University, P.O. Box 15551, Al-Ain, United Arab

214 Emirates

- ¹⁰²National Radio Astronomy Observatory, 1003 Lopezville Road, Socorro, NM 87801, USA
- ²¹⁶ ¹⁰³Caltech, 1200 California Blvd., Pasadena, CA 91106, USA
- ²¹⁷ ¹⁰⁴Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, EH9 3HJ,

218 UK

- ²¹⁹ ¹⁰⁵Birmingham Institute for Gravitational Wave Astronomy and School of Physics and Astronomy,
- 220 University of Birmingham, Birmingham B15 2TT, UK
- ²²¹ ¹⁰⁶ Scuola Universitaria Superiore IUSS Pavia, Piazza della Vittoria 15, 27100 Pavia, Italy
- ²²² ¹⁰⁷INAF IASF Milano, Via E. Bassini 15, 20133 Milano, Italy
- ²²³ ¹⁰⁸ INFN / Laboratori Nazionali del Gran Sasso, Via G. Acitelli 22, 67100, Assergi (AQ), Italy
- ¹⁰⁹Depto. de Física Teórica, Universidad de Zaragoza, E-50019, Zaragoza, Spain
- ¹¹⁰Dipartimento di Scienze Fisiche, Universit degli studi di Napoli Federico II, Via Cinthia, Edifi ²²⁶ cio N, 80126 Napoli, Italy
- ¹¹¹INFN, Sezione di Napoli, Complesso Universitario di Monte S. Angelo, Via Cinthia, Edificio
 N, 80126 Napoli, Italy
- ²²⁹ ¹¹²INAF Osservatorio di Astrofisica e Scienza dello Spazio, via Piero Gobetti 93/3, 40129

- 230 Bologna, Italy
- ¹¹³Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot
 ²³² 76100, Israel
- ²³³ ¹¹⁴ Astrophysics Research Centre, School of Mathematics and Physics, Queen?s University Belfast,
- 234 Belfast BT7 1NN, UK
- ¹¹⁵Department of Physics and Astronomy, Rice University, 6100 South Main, MS-108, Houston,
 TX 77251-1892, USA
- ²³⁷ ¹¹⁶Special Astrophysical Observatory, Nizhniy Arkhyz, Zelenchukskiy region, Karachai ²³⁸ Cherkessian Republic, 369167, Russia
- ¹¹⁷CSIRO Australia Telescope National Facility, Paul Wild Observatory, Narrabri NSW 2390, Aus tralia
- ¹¹⁸Istituto Nazionale di Fisica Nucleare, Sezione di Pavia, Via Bassi 6, 27100 Pavia, Italy
- ²⁴² ¹¹⁹AIM, CEA, CNRS, Université Paris Diderot, Sorbonne Paris Cité, Université Paris-Saclay, F-
- 243 91191 Gif-sur-Yvette, France
- ¹²⁰Department of Astronomy, University of Maryland, College Park, MD 20742-4111, USA
- ¹²¹GEPI, Observatoire de Paris, PSL University, CNRS, 5 Place Jules Janssen, 92190 Meudon,
 France
- ²⁴⁷ ¹²²Australia Telescope National Facility, CSIRO Astronomy and Space Science, PO Box 76, Ep-
- 248 ping, NSW 1710, Australia
- ¹²³CAS Key Laboratory of Space Astronomy and Technology, National Astronomical Observato ries, Chinese Academy of Sciences, Beijing 100012, China

Long-duration gamma-ray bursts (GRBs) originate from ultra-relativistic jets launched from 25 the collapsing cores of dying massive stars. They are characterised by an initial phase of 252 bright and highly variable radiation in the keV-MeV band that is likely produced within the 253 jet and lasts from milliseconds to minutes, known as the prompt emission^{1,2}. Subsequently, 254 the interaction of the jet with the external medium generates external shock waves, respon-255 sible for the afterglow emission, which lasts from days to months, and occurs over a broad 256 energy range, from the radio to the GeV bands¹⁻⁶. The afterglow emission is generally well 257 explained as synchrotron radiation by electrons accelerated at the external shock $^{7-9}$. Re-258 cently, an intense, long-lasting emission between 0.2 and 1 TeV was observed from the GRB 259 190114C¹⁰. Here we present the results of our multi-frequency observational campaign of 260 GRB 190114C, and study the evolution in time of the GRB emission across 17 orders of mag-261 nitude in energy, from 5×10^{-6} up to 10^{12} eV. We find that the broadband spectral energy 262 distribution is double-peaked, with the TeV emission constituting a distinct spectral compo-263 nent that has power comparable to the synchrotron component. This component is associ-264 ated with the afterglow, and is satisfactorily explained by inverse Compton upscattering of 265 synchrotron photons by high-energy electrons. 266

We find that the conditions required to account for the observed TeV component are not atypical, supporting the possibility that inverse Compton emission is commonly produced in GRBs.

On 14 January 2019, following an alert from the Neil Gehrels Swift Observatory (hereafter *Swift*) and the *Fermi* satellite, **the Major Atmospheric Gamma Imaging Cherenkov (MAGIC**) telescopes observed and detected radiation up to at least 1 TeV from GRB 190114C. Before the MAGIC detection, GRB emission has only been reported at much lower energies, ≤ 100 GeV, first by *CGRO*/EGRET in a handful of cases, and more recently by *AGILE*/GRID and *Fermi*/LAT (see ¹¹ for a recent review).

Detection of TeV radiation opens a new window in the electromagnetic spectrum for the 276 study of GRBs¹⁰. Its announcement¹² triggered an extensive campaign of follow-up observations. 277 Owing to the relatively low redshift $z = 0.4245 \pm 0.0005$ (see Methods) of the GRB (corresponding 278 to a luminosity distance of $\sim 2.3\,\mathrm{Gpc}$) a comprehensive set of multi-wavelength data could be 279 collected. We present observations gathered from instruments onboard six satellites and 15 ground 280 telescopes (radio, submm and NIR/optical/UV and very high energy gamma-rays; see Methods) 281 for the first ten days after the burst. The frequency range covered by these observations spans more 282 than 17 orders of magnitude, from 1 to $\sim 2 \times 10^{17}$ GHz, the most extensive to date for a GRB. The 283 light curves of GRB 190114C at different frequencies are shown in Fig. 1. 284

The prompt emission of GRB 190114C was simultaneously observed by several space missions (see Methods), covering the spectral range from 8 keV to ~ 100 GeV. The prompt light curve shows a complex temporal structure, with several emission peaks (Methods; Extended Data Fig. 1), with total duration ~ 25 s (see dashed line in Fig. 1) and total radiated energy $E_{\gamma,iso} = (2.5 \pm 0.1)$ ×10⁵³ ergs (isotropic equivalent, in the energy range $1 - 10^4$ keV ¹³). During the time of inter-burst quiescence at $t \sim [5 - 15]$ seconds and after the end of the last prompt pulse at $t \gtrsim 25$ s, the flux decays smoothly, following a power law in time $F \propto t^{\alpha}$, with $\alpha_{10-1000keV} = -1.10 \pm 0.01^{13}$. The

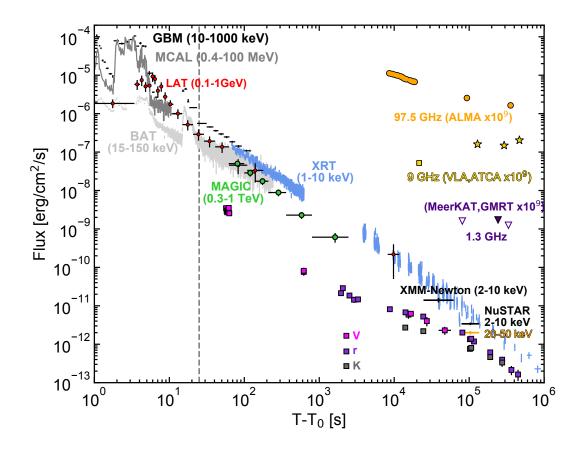


Figure 1: **Multi-wavelength light curves of GRB 190114C.** Energy flux at different wavelengths, from radio to gamma-rays, versus time since the BAT trigger time $T_0 = 20:57:03.19$ UT on 14 January 2019. The light curve for the energy range 0.3-1 TeV (green circles) is compared with light curves at lower frequencies. Those for VLA (yellow square), ATCA (yellow stars), ALMA (orange circles), GMRT (purple filled triangle), and MeerKAT (purple empty triangles) have been multiplied by 10^9 for clarity. The vertical dashed line marks approximately the end of the prompt emission phase, identified with the end of the last flaring episode. For the data points, vertical bars show the 1- σ errors on the flux, while horizontal bars represent the duration of the observation.

temporal and spectral characteristics of this smoothly varying component support an interpretation in terms of afterglow synchrotron radiation, making this one of the few clear cases of afterglow emission detected in the band $10 - 10^4$ keV during the prompt emission phase. The onset of the afterglow component is then estimated to occur around $t \sim 5 - 10$ s^{13,14}, implying an initial bulk Lorentz factor between 300 and 700 (Methods).

After about one minute from the start of the prompt emission, two additional high-energy 297 telescopes began observations: MAGIC and Swift/XRT. The XRT and MAGIC light curves (1-298 10 keV, blue data points in Fig. 1, and 0.3-1 TeV, green data points, respectively) decay with time as 299 a power law, and display the following decay rates: $\alpha_{\rm X} \sim -1.36 \pm 0.02$ and $\alpha_{\rm TeV} \sim -1.51 \pm 0.04$. 300 The 0.3-1 TeV light curve shown in Fig. 1 was obtained after correcting for attenuation by the 301 extragalactic background light (EBL)¹⁰. The TeV-band emission is observable until \sim 40 minutes, 302 which is much longer than the nominal duration of the prompt emission phase. The NIR-optical 303 light curves (square symbols) show a more complex behaviour. Initially, a fast decay is seen, 304 where the emission is most likely dominated by the reverse shock component¹⁵. This is followed 305 by a shallower decay, and subsequently a faster decay at $t \gtrsim 10^5 \, {
m s.}\,$ The latter behaviour might 306 indicate that the characteristic synchrotron frequency $\nu_{\rm m}$ is crossing the optical band (Extended 307 Data Fig. 6), which is not atypical, but usually occurs at earlier times. The relatively late time at 308 which the break appears in GRB 190114C would then imply a very large value of $\nu_{\rm m}$, placing it in 309 the X-ray band at $\sim 10^2$ s. The millimeter light curves (orange symbols) also show an initial fast 310 decay where the emission is dominated by the reverse shock, followed by emission at late times 311 with nearly constant flux (Extended Data Fig. 3). 312

The spectral energy distributions (SEDs) of the radiation detected by MAGIC are shown in 313 Fig. 2, where the whole duration of the emission detected by MAGIC is divided into five time in-314 tervals. For the first two time intervals, observations in the GeV and X-ray bands are also available. 315 During the first time interval (68-110 s, blue data points and blue confidence regions), Swift/XRT-316 BAT and *Fermi*/GBM data show that the afterglow synchrotron component is peaking in the X-ray 317 band. At higher energies, up to ≤ 1 GeV, the SED is a decreasing function of energy, as supported 318 by the *Fermi*/LAT flux between 0.1 and 0.4 GeV (see Methods). On the other hand, at even higher 319 energies, the MAGIC flux above 0.2 TeV implies a spectral hardening. This evidence is indepen-320 dent of the EBL model adopted to correct for the attenuation (Methods). This demonstrates that 321 the newly discovered TeV radiation is not a simple extension of the known afterglow synchrotron 322 emission, but rather a separate spectral component that has never been clearly seen before. 323

The extended duration and the smooth, power-law temporal decay of the radiation detected 324 by MAGIC (see green data points in Fig. 1) suggest an intimate connection between the TeV 325 emission and the broadband afterglow emission. The most natural candidate is synchrotron self-326 Compton (SSC) radiation in the external forward shock: the same population of relativistic elec-327 trons responsible for the afterglow synchrotron emission Compton upscatters the synchrotron pho-328 tons, leading to a second spectral component that peaks at higher energies. TeV afterglow emission 329 can also be produced by hadronic processes such as synchrotron radiation by protons accelerated 330 to ultra-high energies in the forward shock $^{16-18}$. However, due to their typically low efficiency 331 of radiation⁶, reproducing the luminous TeV emission as observed here by such processes would 332 imply unrealistically large power in accelerated protons¹⁰. TeV photons can also be produced via 333

the SSC mechanism in internal shock synchrotron models of the prompt emission. However, numerical modeling (Methods) shows that prompt SSC radiation can account at most for a limited fraction ($\leq 20\%$) of the observed TeV flux, and only at early times ($t \leq 100$ s). Henceforth, we focus on the SSC process in the afterglow.

SSC emission has been predicted for GRB afterglows^{9,11,17,19–26}. However, its quantitative 338 significance was uncertain, as the SSC luminosity and spectral properties depend strongly on the 339 poorly constrained physical conditions in the emission region (e.g., the magnetic field strength). 340 The detection of the TeV component in GRB 190114C and the availability of **multi-band** obser-341 vations offer the opportunity to investigate the relevant physics at a deeper level. SSC radiation 342 might have been already detected in very bright GRBs, such as GRB 130427A. Photons with ener-343 gies 10-100 GeV, as those detected in GRB 130427A are challenging to explain by the synchrotron 344 processes, suggesting a different origin^{27–29}. 345

We model the full data set (from radio band to TeV energies, for the first week after the explosion) as synchrotron plus SSC radiation, within the framework of the theory of afterglow emission from external forward shocks. The detailed modeling of the broadband emission and its evolution with time is presented in Section Methods. We discuss here the implications for the emission at t < 2400 s and energies above > 1 keV.

The soft spectra in the 0.2-1 TeV energy range (photon index $\Gamma_{\text{TeV}} < -2$; see Extended Data Table 1) constrain the peak of the SSC component to be below this energy range. The relatively small ratio between the spectral peak energies of the SSC ($E_{\text{p}}^{\text{SSC}} \lesssim 200 \text{ GeV}$) and synchrotron

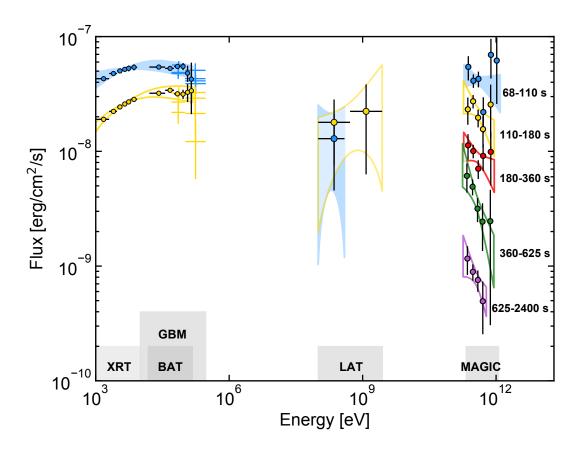


Figure 2: **Multi-band spectra in the time interval 68-2400 s**. Five time intervals are considered: 68-110 s (blue), 110-180 s (yellow), 180-360 s (red), 360-625 s (green), 625-2400 s (purple). MAGIC data points have been corrected for attenuation caused by the **extragalactic back-ground light**. Data from other instruments are shown for the first two time-intervals: *Swift/XRT*, *Swift/BAT*, *Fermi/GBM*, and *Fermi/LAT*. For each time interval, LAT contour regions are shown limiting the energy range to the range where photons are detected. MAGIC and LAT contour regions are drawn from the 1- σ error of their best-fit power law functions. For *Swift* data, the regions show the 90% confidence contours for the joint fit XRT-BAT obtained fitting to the data a smoothly broken power law. Filled regions are used for the first time interval (68-110 s, blue color).

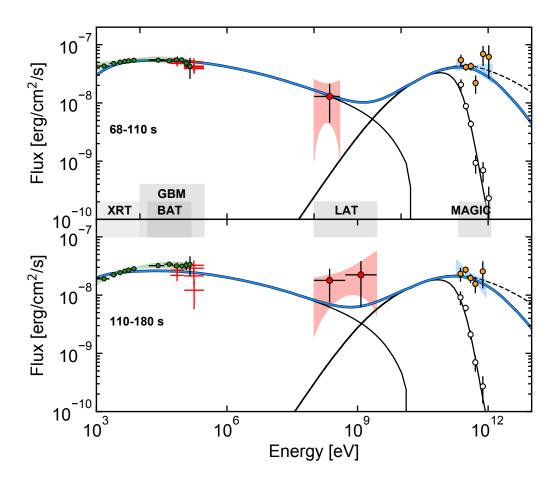


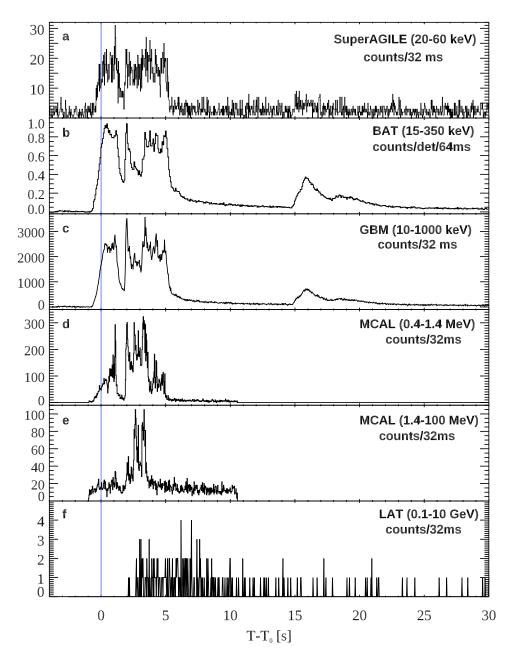
Figure 3: Modeling of the broadband spectra in the time intervals 68-110 s and 110-180 s. Thick blue curve: modeling of the multi-band data in the synchrotron and SSC afterglow scenario. Thin solid lines: synchrotron and SSC (observed spectrum) components; dashed lines: SSC if internal γ - γ opacity is neglected. The adopted parameters are: s = 0, $\epsilon_e = 0.07$, $\epsilon_B = 8 \times 10^{-5}$, p = 2.6, $n_0 = 0.5$, and $E_k = 8 \times 10^{53}$ erg, see the Text. Empty circles show the observed MAGIC spectrum, i.e. not corrected by attenuation caused by the **extragalactic background light**. Contour regions and data points as in Fig. 2.

 $(E_{\rm p}^{\rm syn} \sim 10 \, \rm keV)$ components implies a relatively low value for the Lorentz factor of the electrons 354 $(\gamma \sim 2 \times 10^3)$. This value is hard to reconcile with the observation of the synchrotron peak at \gtrsim keV 355 energies. In order to explain the soft spectrum detected by MAGIC, it is necessary to invoke the 356 **Klein-Nishina** (KN) regime scattering for the electrons radiating at the spectral peak as well 357 as internal γ - γ absorption³⁰. While both effects tend to become less important with time, the 358 spectral index in the 0.2-1 TeV band remains constant in time (or possibly evolves to softer values; 359 Extended Data Table 1). This implies that the SSC peak energy is moving to lower energies and 360 crossing the MAGIC energy band. The energy at which attenuation by internal pair production 361 becomes important indicates that the bulk Lorentz factor is \sim 140-160 at 100 s. 362

An example of the theoretical modeling in this scenario is shown in Fig. 3 (blue solid curve, see Methods for details). The dashed line shows the SSC spectrum when internal absorption is neglected. The thin solid line shows the model spectrum including EBL attenuation, in comparison to **the MAGIC observations** (empty circles).

We find that acceptable models of the broadband SED can be obtained if the conditions at the source are the following. The initial kinetic energy of the blastwave is $E_{\rm k} \gtrsim 3 \times 10^{53}$ erg (isotropic-equivalent). The electrons swept up from the external medium are efficiently injected into the acceleration process, and carry a fraction $\epsilon_{\rm e} \sim 0.05 - 0.15$ of the energy dissipated at the shock. The acceleration mechanism produces an electron population characterized by a nonthermal energy distribution, described by a power law with index $p \sim 2.4 - 2.6$, injection Lorentz factor $\gamma_{\rm m} = (0.8 - 2) \times 10^4$ and maximum Lorentz factor $\gamma_{\rm max} \sim 10^8$ (at ~ 100 s). The magnetic field behind the shock conveys a fraction $\epsilon_{\rm B} \sim (0.05 - 1) \times 10^{-3}$ of the dissipated energy. At $t \sim 100$ s, corresponding to $R \sim (8 - 20) \times 10^{16}$ cm, the density of the external medium is $n \sim 0.5 - 5 \,\mathrm{cm}^{-3}$, and the magnetic field strength is $B \sim 0.5 - 5$ Gauss. The latter implies that the magnetic field was efficiently amplified from values of a few μ Gauss that are typical of the unshocked ambient medium, due to plasma instabilities or other mechanisms⁶. Not surprisingly, we find that $\epsilon_{\rm e} \gg \epsilon_{\rm B}$, that is a necessary condition for the efficient production of SSC radiation^{17,19}.

The blastwave energy inferred from the modeling is comparable to the amount of energy 380 released in the form of radiation during the prompt phase. The prompt emission mechanism must 381 then have dissipated and radiated no more than half of the initial jet energy, leaving the other half 382 available for the afterglow phase. The modeling of the **multi-band** data also allows us to infer how 383 the total energy is shared between the synchrotron and the SSC components. The resultant power 384 in the two components are comparable. We estimate that the energy in the synchrotron and SSC 385 component are $\sim 1.5 \times 10^{52}$ erg and $\sim 6.0 \times 10^{51}$ erg respectively in the time interval 68-110 s, and 386 $\sim 1.3 \times 10^{52}$ erg and $\sim 5.4 \times 10^{51}$ erg respectively in the time interval 110-180 s. Thus, previous 387 studies of GRBs may have been missing a significant fraction of the energy emitted during the 388 afterglow phase that is essential to its understanding. 389


Finally, we note that the values of the afterglow parameters inferred from the modeling fall within the range of values typically inferred from broadband (radio-to-GeV) studies of GRB afterglow emission. This points to the possibility that SSC emission in GRBs may be a relatively common process that does not require special conditions to be produced with power similar to ³⁹⁴ synchrotron radiation.

The SSC component may then be detectable at TeV energies in other relatively energetic GRBs, as long as the redshift is low enough to avoid severe attenuation by the EBL. This also provides support to earlier indications for SSC emission at GeV energies ^{27–29}.

398 Methods

Prompt emission observations On 14 January 2019, the prompt emission from GRB 190114C 399 triggered several space instruments, including Fermi/GBM³¹, Fermi/LAT³², Swift/BAT³³, Super-400 AGILE³⁴, AGILE/MCAL³⁴, KONUS/Wind³⁵, INTEGRAL/SPI-ACS³⁶, and Insight/HXMT³⁷. The 401 prompt emission light curves from AGILE, Fermi, and Swift are shown in Fig. 1 and in Ex-402 tended Data Fig. 1, where the trigger time T_0 (here and elsewhere) refers to the BAT trigger time 403 (20:57:03.19 UT). The prompt emission lasts approximately for 25 s, where the last flaring emis-404 sion episode ends. Nominally, the T_{90} , i.e. the time interval during which a fraction between 405 5% and 95% of the total emission is observed, is much longer (> 100 s, depending on the instru-406 ment ¹³), but is clearly contaminated by the afterglow component (Fig. 1) and does not provide a 407 good measure of the actual duration of the prompt emission. A more detailed study of the prompt 408 emission phase is reported in ¹³. 409

AGILE (The Astrorivelatore Gamma ad Immagini LEggero³⁸) could observe GRB 190114C until 410 T_0 +330 s, before it became occulted by the Earth. GRB 190114C triggered the Mini-CAL orimeter 411 (MCAL) from T0-0.95 s to T0+10.95 s. The MCAL light flux curve in Fig. 1 has been pro-412 duced using two different spectral models. From T_0 -0.95 s to T_0 +1.8 s, the spectrum is fit-413 ted by a power law with photon index $\Gamma_{\rm ph}=$ -1.97 $^{+0.47}_{-0.70}$ ($dN/dE\propto E^{\Gamma_{\rm ph}}$). From T_0+ 1.8 s to 414 $T_0 + 5.5$ s the best fit model is a broken power law with $\Gamma_{\rm ph,1} = -1.87^{+0.54}_{-0.19}, \Gamma_{\rm ph,2} = -2.63^{+0.07}_{-0.07}$ 415 and break energy $E_{\rm b}=756^{+137}_{-159}$ keV. The total fluence in the 0.4–100 MeV energy range is F=416 1.75×10^{-4} erg cm⁻². The Super-AGILE detector also detected the burst, but the large off-axis 417 angle prevented any X-ray imaging of the burst, as well as spectral analysis. Panels **a**, **d**, and **e** 418

Extended Data Figure 1: **Prompt emission light curves for different detectors.** The different panels show light curves for: **a**, SuperAGILE (20-60 keV); **b**, *Swift*/BAT (15-150 keV); **c**, *Fermi*/GBM (10-1000 keV); **d**, *AGILE*/MCAL (0.4-1.4 MeV); **e**, *AGILE*/MCAL (1.4-100 MeV); **f**, *Fermi*/LAT (0.1-10 GeV). The light curve of *AGILE*/MCAL is split into two bands to show the energy dependence of the first peak. Error bars show the 1- σ statistical errors.

in Extended Data Fig. 1 show the GRB 190114C light curves acquired by the Super-AGILE detector (20 - 60 keV) and by the MCAL detector in the low- (0.4 - 1.4 MeV) and high-energy (1.4 - 100 MeV) bands.

Fermi/GBM At the time of the MAGIC observations there are indications that some of the de-422 tectors are partially blocked by structure on the *Fermi* Spacecraft that is not modeled in the GBM 423 detectors' response. This affects the low-energy part of the spectrum ³⁹. For this reason, out of cau-424 tion we elected to exclude the energy channels below 50 keV. The spectra detected by the Fermi-425 Gamma-ray Burst Monitor (GBM)⁴⁰ during the T_0 +68 s to T_0 +110 s and T_0 +110 s to T_0 +180 s 426 intervals are best described by a power law model with photon index $\Gamma_{\rm ph}\,=\,-2.10\,\pm\,0.08$ and 427 $\Gamma_{\rm ph}=-2.05\pm0.10$ respectively (Fig. 2 and Fig. 3). The 10-1000 keV light curve in Extended 428 Data Fig. 1 (panel c) was constructed by summing photon counts for the bright NaI detectors. 429

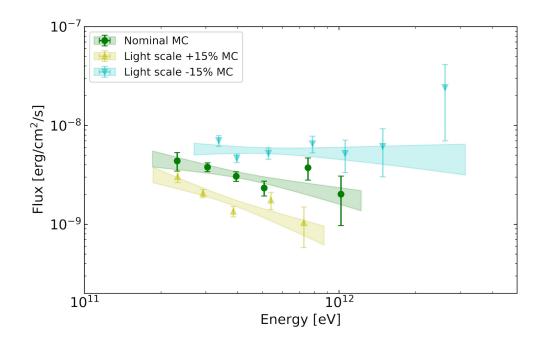
Swift/BAT The 15 – 350 keV mask-weighted light curve of the Burst Alert Telescope (BAT ⁴¹) shows a multi-peaked structure that starts at $T_0 - 7$ s (Extended Data Fig. 1, panel b). The 68–110 s and 110 – 180 s spectra shown in Figs. 2 and 3 were derived from joint XRT-BAT fit. The bestfitting parameters for the whole interval (68 – 180 s) are: column density $N_{\rm H} = (7.53^{+0.74}_{-1.74}) \times$ 10^{22} cm⁻² at z = 0.42, in addition to the galactic value of 7.5×10^{19} cm⁻², low-energy photon index $\Gamma_{\rm ph,1} = -1.21^{+0.40}_{-1.26}$, high-energy spectral index $\Gamma_{\rm ph,2} = -2.19^{+0.39}_{-0.19}$, peak energy $E_{\rm pk} > 14.5$ keV. Errors are given at 90% confidence level.

Fermi/LAT The *Fermi* Large Area Telescope $(LAT)^{42}$ detected a gamma-ray counterpart since the prompt phase⁴³. The burst left the LAT field of view (FoV) at T_0 +150 s and remained outside

the LAT FoV until T_0 +8600 s. The count light curve in the energy range 0.1-10 GeV is shown 439 in Extended Data Fig. 1 (panel f). The LAT spectra in the time bins 68-110 s and 110-180 s 440 (Figs. 2 and 3) are described by a power law with pivot energies of, respectively, 200 MeV and 441 500 MeV, photon indices $\Gamma_{\rm ph}(68-110) = -2.02 \pm 0.95$ and $\Gamma_{\rm ph}(110-180) = -1.69 \pm 0.42$, 442 and corresponding normalisations of $N_{0.68-110} = (2.02 \pm 1.31) \times 10^{-7}$ ph MeV⁻¹cm⁻² s and 443 $N_{0,110-180} = (4.48 \pm 2.10) \times 10^{-8}$ ph MeV⁻¹cm⁻² s. In each time-interval, the analysis has been 444 performed limited to the energy range where photons have been detected. The LAT light curve 445 integrated in the energy range 0.1-1 GeV is shown in Fig. 1. 446

MAGIC We used the Major Atmospheric Gamma Imaging Cherenkov (MAGIC) standard soft-447 ware ⁴⁴ and followed the steps optimised for the data taking under moderate moon illumination⁴⁵ 448 to analyse the data. The spectral fitting is performed by a forward-folding method assuming a sim-449 ple power law for the intrinsic spectrum and taking into account the extragalactic background 450 light (EBL) effect using the model of Domínguez et al.⁴⁶. Extended Data Table 1 shows the fitting 451 results for various time bins (the pivot energy is chosen to minimise the correlation between nor-452 malisation and photon index parameters). The data points shown in both Fig. 2 and 3 are obtained 453 from the observed excess rates in estimated energy whose fluxes are evaluated in true energy using 454 effective time and a spill-over corrected effective area obtained as a resultant of the best fit. 455

The time resolved analysis hints to a possible spectral evolution to softer values. Although we can not exclude that the photon indices are compatible with a constant value of ~ -2.5 up to 2400 s. The signal and background in the considered time bins are both in the low-count Poisson regime. Therefore, the correct treatment of the MAGIC data provided here includes along with the


Time bin	Normalisation	Photon index	Pivot energy
[seconds after T_0]	$[{ m TeV^{-1}cm^{-2}s^{-1}}]$		[GeV]
62 - 90	$1.95^{+0.21}_{-0.20} \cdot 10^{-7}$	$-2.17^{+0.34}_{-0.36}$	395.5
68 - 180	$1.10^{+0.09}_{-0.08} \cdot 10^{-7}$	$-2.27^{+0.24}_{-0.25}$	404.7
180 - 625	$2.26^{+0.21}_{-0.20} \cdot 10^{-8}$	$-2.56^{+0.27}_{-0.29}$	395.5
68 - 110	$1.74^{+0.16}_{-0.15} \cdot 10^{-7}$	$-2.16^{+0.29}_{-0.31}$	386.5
110 - 180	$8.59^{+0.95}_{-0.91} \cdot 10^{-8}$	$-2.51^{+0.37}_{-0.41}$	395.5
180 - 360	$3.50^{+0.38}_{-0.36}$ $\cdot 10^{-8}$	$-2.36^{+0.34}_{-0.37}$	395.5
360 - 625	$1.65^{+0.23}_{-0.23} \cdot 10^{-8}$	$-3.16^{+0.48}_{-0.54}$	369.1
625 - 2400	$3.52^{+0.47}_{-0.47} \cdot 10^{-9}$	$-2.80^{+0.48}_{-0.54}$	369.1
62 - 2400 (Nominal MC)	$1.07^{+0.08}_{-0.07} \cdot 10^{-8}$	$-2.51^{+0.20}_{-0.21}$	423.8
62 - 2400 (Light scale +15% MC)	$7.95^{+0.58}_{-0.56}$ $\cdot 10^{-9}$	$-2.91^{+0.23}_{-0.25}$	369.1
62 - 2400 (Light scale -15% MC)	$1.34^{+0.09}_{-0.09}$ \cdot 10^{-8}	$-2.07^{+0.18}_{-0.19}$	509.5

Extended Data Table 1: MAGIC spectral fit parameters for GRB 190114C. For each time bin, columns represent a) start time and end time of the bin; b) normalisation of the EBL-corrected differential flux at the pivot energy with statistical errors; c) photon indices with statistical errors; d) pivot energy of the fit (fixed).

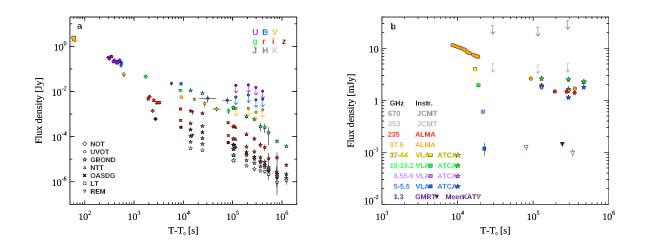
use of the Poisson statistic also the systematic errors. To estimate the main source of systematic error caused by our imperfect knowledge of the absolute instrument calibration and the total atmospheric transmission we vary the light-scale in our Monte Carlo (MC) simulation as suggested in previous studies⁴⁴. The result is reported in the last two lines of Extended Data Table 1 and in Extended Data Fig. 2.

The systematic effects deriving from the choice of one particular EBL model were also stud-465 ied. The analysis performed to obtain the time integrated spectrum was repeated employing other 466 three models⁴⁷⁻⁴⁹. The contribution to the systematic error on the photon index caused by the un-467 certainty on the EBL model is $\sigma_{\alpha} = ^{+0.10}_{-0.13}$ which is smaller than the statistical error only (1 standard 468 deviation) as already seen in a previous work¹⁰. On the other hand, the contribution to the system-469 atic error on the normalisation, due to choice of the EBL model, is only partially at the same level 470 of the statistical error (1 standard deviation) $\sigma_N = ^{+0.30}_{-0.08} \times 10^{-8}$. The chosen EBL model returns a 471 lower normalisation with respect to two of the other models and very close to the third one ⁴⁷. 472

The MAGIC energy flux light curve that is presented in Fig. 1 was obtained by integrating the best fit spectral model of each time bin from 0.3 to 1 TeV, in the same manner as a previous publication¹⁰. The value of the fitted time constant reported here differs less than two standard deviation from the one previously reported¹⁰. The difference is due to the poor constraints on the spectral fit parameters of the last time bin, which influences the light curve fit.

Extended Data Figure 2: MAGIC time integrated spectral energy distributions in the time interval 62-2400 s after T_0 . The green (yellow, blue) points and band show the result with the nominal (+15%, -15%) light scale MC, defining the limits of the systematic uncertainties. The contour regions are drawn from the 1- σ error of their best-fit power law functions. The vertical bars of the data points show the 1- σ errors on the flux.

478 X-ray afterglow observations


Swift/XRT The *Swift* X-Ray Telescope (XRT) started observing 68 s after T_0 . The source light curve⁵⁰ was taken from the *Swift/XRT* light curve repository ⁵¹ and converted into 1-10 keV flux (Fig. 1) through dedicated spectral fits. The combined spectral fit XRT+BAT in Figs. 2 and 3 has been described above.

XMM-Newton and *NuSTAR* The *XMM-Newton* X-ray Observatory and the Nuclear Spectroscopic Telescope Array (*NuSTAR*) started observing GRB 190114C under DDT ToOs 7.5 hours and 22.5 hrs (respectively) after the burst. The *XMM-Newton* and NuSTAR absorption-corrected fluxes (see Fig. 1) were derived by fitting the spectrum with XSPEC adopting the same power law model, with absorption in our Galaxy and at the redshift of the burst.

NIR, Optical and UV afterglow observations Light curves from the different instruments pre sented in this section are shown in Extended Data Fig. 3.

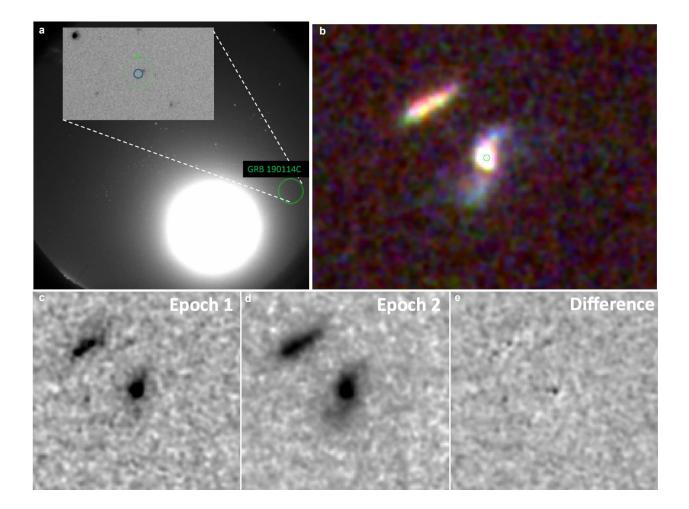
GROND The Gamma-ray Burst Optical/Near-infrared Detector (GROND⁵²) started observations 3.8 hours after the GRB trigger, and the follow-up continued until January 29, 2019. Image reduction and photometry were carried out with standard IRAF tasks ⁵³, as described in ^{54,55}. *JHK*_s photometry was converted to AB magnitudes to have a common flux system. Final photometry is given in Extended Data Table 2.

GTC The BOOTES-2 ultra-wide field camera ⁵⁶, took an image at the GRB 190114C location,
starting at 20:57:18 UT (30 s exposure time) (see Extended Data Fig. 4). The Gran Canarias

Extended Data Figure 3: Afterglow light curves of GRB 190114C. Flux density at different frequencies, as a function of the time since the initial burst T_0 . Panel **a**: observations in the NIR/Optical/UV bands. The flux has been corrected for extinction in the host and in our Galaxy. The contribution of the host galaxy and its companion has been subtracted. Fluxes have been rescaled (except for the r filter). Panel **b**: Radio and sub-mm observations from 1.3 GHz to 670 GHz.

$T_{\rm GROND}$		AB magnitude					
(s)	g'	r'	i'	z'	J	Н	K_s
14029.94 ± 335.28	19.21 ± 0.03	18.46 ± 0.03	17.78 ± 0.03	17.33 ± 0.03	16.78 ± 0.05	16.30 ± 0.05	16.03 ± 0.07
24402.00 ± 345.66	19.50 ± 0.04	18.72 ± 0.03	18.05 ± 0.03	17.61 ± 0.03	17.02 ± 0.05	16.53 ± 0.05	16.26 ± 0.08
102697.17 ± 524.01	20.83 ± 0.06	20.00 ± 0.04	19.30 ± 0.04	18.87 ± 0.03	18.15 ± 0.05	17.75 ± 0.06	17.40 ± 0.09
106405.63 ± 519.87	20.86 ± 0.05	19.98 ± 0.03	19.34 ± 0.03	18.88 ± 0.03	18.17 ± 0.06	17.75 ± 0.06	17.34 ± 0.09
191466.77 ± 751.37	21.43 ± 0.07	20.61 ± 0.03	19.97 ± 0.03	19.52 ± 0.03	18.77 ± 0.06	18.28 ± 0.06	17.92 ± 0.14
275594.19 ± 747.59	21.57 ± 0.07	20.88 ± 0.04	20.31 ± 0.04	19.87 ± 0.04	19.14 ± 0.07	18.57 ± 0.06	18.26 ± 0.21
366390.74 ± 1105.79	21.87 ± 0.07	21.17 ± 0.04	20.62 ± 0.03	20.15 ± 0.03	19.43 ± 0.06	18.89 ± 0.06	18.46 ± 0.15
448791.55 ± 1201.33	21.90 ± 0.08	21.27 ± 0.04	20.79 ± 0.04	20.33 ± 0.03	19.66 ± 0.07	18.97 ± 0.07	18.55 ± 0.18
537481.41 ± 1132.16	22.02 ± 0.09	21.52 ± 0.05	21.00 ± 0.04	20.55 ± 0.03	19.87 ± 0.07	19.20 ± 0.07	18.83 ± 0.17
794992.63 ± 1200.69	22.14 ± 0.04	21.51 ± 0.03	21.05 ± 0.04	20.71 ± 0.05	20.31 ± 0.13	19.79 ± 0.14	19.59 ± 0.41
1226716.84 ± 1050.15	22.17 ± 0.04	21.59 ± 0.04	21.26 ± 0.04	20.97 ± 0.04	20.34 ± 0.12	19.95 ± 0.11	19.40 ± 0.34

Extended Data Table 2: GROND photometry. T_{GROND} in seconds after the BAT trigger.


The AB magnitudes are not corrected for the Galactic foreground reddening.

⁴⁹⁷ Telescope (GTC) equipped with the OSIRIS spectrograph⁵⁷ started observations 2.6 hr post-burst. ⁴⁹⁸ The grisms R1000B and R2500I were used covering the wavelength range 3,700-10,000 Å (600 s ⁴⁹⁹ exposure times for each grism). The GTC detects a highly extinguished continuum, as well as CaII ⁵⁰⁰ H and K lines in absorption, and [OII], H_{β}, and [OIII] in emission (see Extended Data Fig. 5), all ⁵⁰¹ roughly at the same redshift $z = 0.4245 \pm 0.0005$ ⁵⁸. Comparing the derived rest-frame equivalent ⁵⁰² widths (EWs) with the work by ⁵⁹, GRB 190114C clearly shows higher than average, but not ⁵⁰³ unprecedented, values.

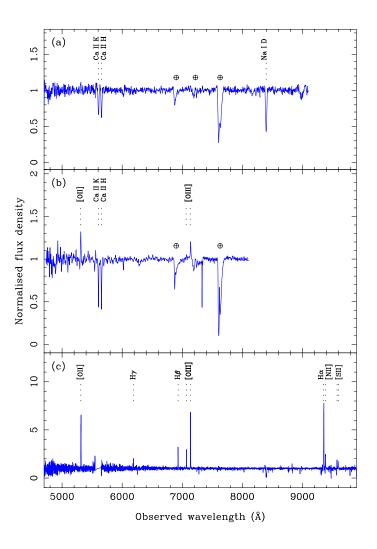
HST The *Hubble Space Telescope* (*HST*) imaged the afterglow and host galaxy of GRB 190114C on 11 February and 12 March 2019. HST observations clearly reveal that the host galaxy is spiral (Extended Data Fig. 4). A direct subtraction of the epochs of F850LP observations yields a faint residual close to the nucleus of the host (Extended Data Fig. 4). From the position of the residual we estimate that the burst originated within 250 pc of the host galaxy nucleus.

LT The robotic 2-m Liverpool Telescope (LT⁶⁰) slewed to the afterglow location at UTC 2019-01-14.974 and on the second night, from UTC 2019-01-15.814 and acquired images in *B*, *g*, *V*, r, *i* and *z* bands (45 s exposure each in the first night and 60 s in the second, see Extended Data Table 3). Aperture photometry of the afterglow was performed using a custom IDL script with a fixed aperture radius of 1.5". Photometric calibration was performed relative to stars from the Pan-STARRS1 catalogue⁶¹.

NTT The ESO New Technology Telescope (NTT) observed the optical counterpart of GRB 190114C
 under the extended Public ESO Spectroscopic Survey for Transient Objects (ePESSTO) using the

Extended Data Figure 4: Images of the localisation region of GRB 190114C. Panel a: The CASANDRA-2 at the BOOTES-2 station all-sky image. The image (30 s exposure, unfiltered) was taken at T0+14.8 s. At the GRB 190114C location (circle) no prompt optical emission is detected. Panel b: Three-colour image of the host of GRB 190114C with the HST. The host galaxy is a spiral galaxy, and the green circle indicates the location of the transient close to its host nucleus. The image is 8" across, north is up and east to the left. Panels c, d and e: F850LP imaging of GRB 190114C taken with the HST. Two epochs are shown (images are 4" across), as well as the result of the difference image. A faint transient is visible close to the nucleus of the galaxy, and we identify this as the late time afterglow of the burst.

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		-							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		-	UTC			Exposure (s)) Mag	nitude	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			2019-01-14	975			19.08	+0.06	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			2019-01-14	.978	z	45			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			2019-01-14	.979	B	45	19.55	±0.15	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					V		18.81	±0.08	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					r				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$									
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		=	2019-01-13	.023	-		20.90	±0.17	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			2010 01 14 0	0107			17 70	1002	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$									
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						VOT			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		_							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	T_{start}	T_{stop}	Filter	Magnit	ude	T_{start}	T_{stop}	Filter	Magnitude
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	56.63	57.63	V	12.17 \pm	0.14	130958	142524	UVM2	20.37
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						217406			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		103.34	white	14.19±	0.06			V	20.02
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	103.34	113.34	white	$14.36\pm$	0.06	206689	211356	V	20.02
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	113.34	123.34	white	14.64 \pm	0.06	292383	303996	V	20.42
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			white	$14.65\pm$	0.06			V	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	572.0	582.0	white	$16.90\pm$	0.10	607389	613956	white	22.16
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	535.5	555.5	В	$17.56\pm$	0.21	624452	682416	white	$21.99 {\pm} 0.18$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			U			1502211	1548336	white	$21.98 {\pm} 0.24$
542 561 B 17.38 ± 0.14 2299521 2317956 white 22.41 ± 0.31									
	5646	5845	B			63686	80942	white	21.07±0.24
21038 46521 B 21.14 \pm 0.35 107900 125591 white 21.40 \pm 0.28 62774 96496 P 21.22 \pm 0.29 206292 211127 white 21.52									
62774 96486 B 21.33±0.29 206292 211137 white 21.52 107737 125412 B 21.00 291984 303556 white 21.48±0.23									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
3839 50615 UVM2 20.88±0.28									


Extended Data Table 3: Liverpool Telescope, Nordic Optical Telescope, and UVOT observations. Magnitudes are SDSS AB-"like" for ugriz, Vega-"like" for all the other filters and are not corrected for Galactic extinction. For U^{35} OT data, magnitudes without uncertainties are upper limits. NTT/EFOSC2 instrument in imaging mode ⁶². Observations started at 04:36:53 UT on 2019 January 16 with the g, r, i, z Gunn filters. Image reduction was carried out by following the standard procedures⁶³.

OASDG The 0.5 m remote telescope of the Osservatorio Astronomico "S. Di Giacomo" (OASDG),
 located in Agerola (Italy) started observations in the optical *Rc*-band 0.54 hours after the burst. The
 afterglow of GRB 190114C was clearly detected in all the images.

⁵²³**NOT** The Nordic Optical Telescope (NOT) observed the optical afterglow of GRB 190114C with ⁵²⁴ the Alhambra Faint Object Spectrograph and Camera (AlFOSC) instrument. Imaging was obtained ⁵²⁵ in the *griz* filters with 300 s exposures, starting at Jan 14 21:20:56 UT, 24 minutes after the BAT ⁵²⁶ trigger. The normalised spectrum (Extended Data Fig. 5) reveals strong host interstellar absorption ⁵²⁷ lines due to Ca H & K and Na ID, which provided a redshift of z = 0.425.

REM The Rapid Eye Mount telescope (REM) performed optical and NIR observations with the REM 60 cm robotic telescope equipped with the ROS2 optical imager and the REMIR NIR camera⁶⁴. Observations were performed starting about 3.8 hours after the burst in the r, and Jbands and lasted about one hour.

532 Swift/UVOT The Swift UltraViolet and Optical Telescope (UVOT⁶⁵) began observations at T_0 +54 533 seconds in the UVOT v band. The first observation after settling started 74 s after the trigger for 534 150 s in the UVOT white band⁶⁶. A 50 s exposure with the UV grism was taken thereafter, followed 535 by multiple exposures rotating through all seven broad and intermediate-band filters until switching 536 to only UVOT's clear white filter on 2019-01-20. Standard photometric calibration and methods

Extended Data Figure 5: **Optical/NIR spectra of GRB 190114C.** Panel **a**: The NOT/AIFOSC spectrum obtained at a mid-time 1 hr post-burst. The continuum is afterglow dominated at this time, and shows strong absorption features of Ca II and Na I (in addition to telluric absorption). Panel **b**: the normalised GTC (+OSIRIS) spectrum on Jan 14, 23:32:03 UT, with the R1000B and R2500I grisms. The emission lines of the underlying host galaxy are noticeable, besides the Ca II absorption lines in the afterglow spectrum. Panel **c**: The visible light region of the VLT/X-shooter spectrum obtained approximately 3.2 d post-burst, showing strong emission lines from the star-forming host galaxy.

were used for deriving the aperture photometry^{67,68}. The grism zeroth order the data were reduced manually⁶⁹ to derive the *b*-magnitude and error.

VLT The STARGATE collaboration used the Very Large Telescope (VLT) and observed GRB 190114C using the X-shooter spectrograph. Detailed analysis will be presented in forthcoming papers. A portion of the second spectrum is shown in Extended Data Fig. 5, illustrating the strong emission lines characteristic of a strongly star-forming galaxy, whose light is largely dominating over the afterglow at this epoch.

Magnitudes of the underlying galaxies The HST images show a spiral or tidally disrupted galaxy 544 whose bulge is coincident with the coordinates of GRB 190114C. A second galaxy is detected at an 545 angular distance of 1.3", towards the North East. The SED analysis was performed with LePhare 546 ^{70,71} using an iterative method that combined both the resolved photometry of the two galaxies 547 found in the HST and VLT/HAWK-I data and the blended photometry from GALEX and WISE, 548 where the spatial resolution was much lower. Further details will be given in a paper in preparation 549 (de Ugate Postigo et al.). The estimated photometry, for each object and their combination, is given 550 in Extended Data Table 4. 551

⁵⁵² **Optical Extinction** The optical extinction toward the line of sight of a GRB is derived assuming ⁵⁵³ **a** power law as intrinsic spectral shape⁷². Once the Galactic extinction ($E_{\rm B-V} = 0.01^{73}$) is taken ⁵⁵⁴ into account and the fairly bright host galaxy contribution is properly subtracted, a good fit to the ⁵⁵⁵ data is obtained with the LMC recipe and $A_V = 1.83 \pm 0.15$. The spectral index β ($F_{\nu} \propto \nu^{\beta_0}$) ⁵⁵⁶ evolves from hard to soft across the temporal break in the optical light-curve at about 0.5 days,

Filter	Host	Companion	Combined
Sloan u	23.54	25.74	23.40
Sloan g	22.51	23.81	22.21
Sloan r	22.13	22.81	21.66
Sloan <i>i</i>	21.70	22.27	21.19
Sloan z	21.51	21.74	20.87
2MASS J	20.98	21.08	20.28
2MASS H	20.68	20.82	20.00
2MASS Ks	20.45	20.61	19.77

Extended Data Table 4: **Observations of the host galaxy.** For each filter, the estimated magnitudes are given for the host galaxy of GRB 190114C, the companion and the combination of the two objects.

557 moving from $\beta_{o,1} = -0.10 \pm 0.12$ to $\beta_{o,2} = -0.48 \pm 0.15$.

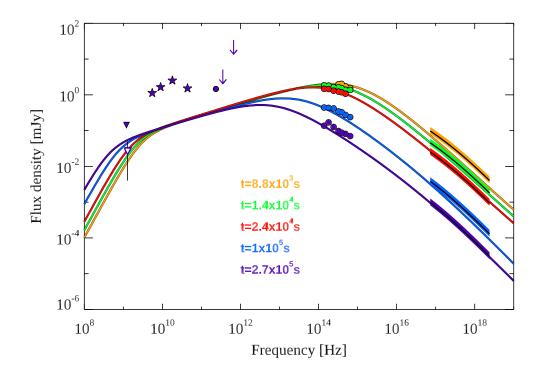
Radio and Sub-mm afterglow observations The light curves from the different instruments are
 shown in Extended Data Fig. 3.

ALMA The Atacama Large Millimetre/Submillimetre Array (ALMA) observations are reported in Band 3 (central observed frequency of 97.500 GHz) and Band 6 (235.0487 GHz), between 2019 January 15 and 2019 January 19. Data were calibrated within CASA (Common Astronomy Software Applications, version 5.4.0⁷⁴) using the pipeline calibration. Photometric measurements were also performed within CASA. ALMA early observations at 97.5 GHz are taken from ¹⁵.

ATCA The Australia Telescope Compact Array (ATCA) observations were made with the ATCA 4 cm receivers (band centres 5.5 and 9 GHz), 15 mm receivers (band centres 17 and 19 GHz), and 7 mm receivers (band centres 43 and 45 GHz). ATCA data were obtained using the CABB continuum mode ⁷⁵ and reduced with the software packages MIRIAD ⁷⁶ and CASA ⁷⁴ using standard techniques. The quoted errors are 1σ , which include the RMS and Gaussian 1σ errors.

GMRT The upgraded Giant Metre-wave Radio Telescope ⁷⁷ (UGMRT) observed on 17th January 2019 13.44 UT (2.8 days after the burst) in band 5 (1000-1450 MHz) with 2048 channels spread over 400 MHz. GMRT detected a weak source with a flux density of $73\pm17 \mu$ Jy at the GRB position ⁷⁸. The flux should be considered as an upper limit, as the contribution from the host⁷⁹ has not been subtracted.

	ATCA		
Start Date and Time	End Date and Time	Frequency GHz	Flux mJy
1/16/2019 6:47:00	1/16/2019 10:53:00	5.5	1.92±0.06
		9	1.78±0.06
		18	2.62±0.26
1/18/2019 1:45:00	1/18/2019 11:18:00	5.5	1.13±0.04
		9	1.65±0.05
		18	2.52±0.27
		44	1.52±0.15
1/20/2019 3:38	1/20/2019 10:25:00	5.5	1.78±0.06
		9	2.26±0.07
		18	2.30±0.23


			JCMT SCUBA	2		
UT Date	Time since trigger (days)	Time on source (hours)	Typical 225 GHz CSO Opacity	Typical elevation (degrees)	850 µm RMS density (mJy/beam)	450 μm RMS density (mJy/beam)
2019-01-15	0.338	1.03	0.026	39	1.7	9.2
2019-01-16	1.338	1.03	0.024	39	1.6	8.4
2019-01-18	3.318	0.95	0.031	37	1.7	11.4

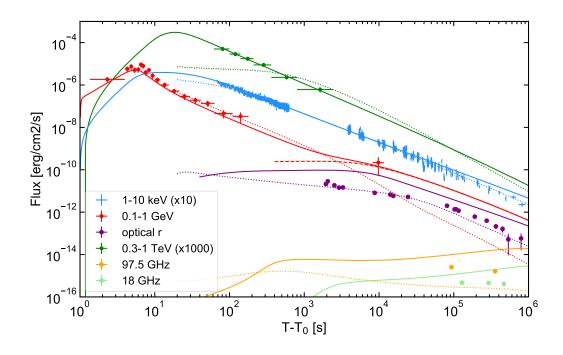
Extended Data Table 5: Observations of GRB 190114C by ATCA and JCMT SCUBA-2. For ATCA data, start and end date and times (UTC) of the observations, frequency, and flux (1 σ error) are reported. For JCMT SCUBA-2 data, the CSO 225 GHz opacity measures the zenith atmospheric attenuation.

⁵⁷⁵ **MeerKAT** The new MeerKAT radio observatory ^{80,81} observed on 15 and 18 January 2019, with ⁵⁷⁶ DDT requested by the ThunderKAT Large Survey Project ⁸². Both epochs used 63 antennas and ⁵⁷⁷ were done at L-band spanning 856 MHz and centered at 1284 MHz. MeerKAT flux estimation ⁵⁷⁸ was done by finding and fitting the source with the software PyBDSF v.1.8.15 ⁸³. Adding the RMS ⁵⁷⁹ noise in quadrature to the flux uncertainty leads to final flux measurements of $125\pm14 \mu$ Jy/beam ⁵⁸⁰ on 15 January and $97\pm16 \mu$ Jy/beam on 18 January. The contribution from the host galaxy⁷⁹ has ⁵⁸¹ not been subtracted. Therefore, these measurements provide a maximum flux of the GRB.

JCMT SCUBA-2 Sub-millimeter Sub-millimeter observations were performed simultaneously at 850 μ m and 450 μ m on three nights using the SCUBA-2 continuum camera⁸⁴. GRB 190114C was not detected on any of the individual nights. Combining all the SCUBA-2 continuum camera⁸⁴ observations, the RMS background noise is 0.95 mJy/beam at 850 μ m and 5.4 mJy/beam at 450 μ m at 1.67 days after the burst trigger.

Prompt emission model for the early time MAGIC emission In the standard picture the prompt 587 sub-MeV spectrum is explained as a synchrotron radiation from relativistic accelerated electrons 588 in the energy dissipation region. The associated inverse Compton component is sensitive to the 589 details of the dynamics: e.g. in the internal shock model if the peak energy is initially very high 590 and the IC component is suppressed due to Klein-Nishina (KN) effects, the peak of the IC com-591 ponent may be delayed and become bright only at late times when scatterings occur in Thomson 592 regime. Simulations showed that magnetic fields required to produce the GeV/TeV component are 593 rather low⁸⁵, $\epsilon_B \sim 10^{-3}$. In this framework the contribution of the IC component to the observed 594 flux at early times (62-90 s, see Extended Data Table 1) does not exceed $\sim 20\%$. Alternatively, if 595

Extended Data Figure 6: **Radio to X-rays SED at different epochs**. The synchrotron frequency $\nu_{\rm m}$ crosses the optical band, moving from higher to lower frequencies. The break between 10⁸ and 10¹⁰ Hz is caused by the self-absorption synchrotron frequency $\nu_{\rm sa}$. Optical (X-ray) data have been corrected for extinction (absorption).


the prompt emission originates in reprocessed photospheric emission, the early TeV flux may arise from IC scatterings of thermal photons by freshly heated electrons below the photosphere at low optical depths. Another possibility for the generation of TeV photons might be the inverse Compton scattering of prompt MeV photons by electrons in the external forward shock region where electrons are heated to an average Lorentz factor of order 10⁴ at early times.

Afterglow model Synchrotron and SSC radiation from electrons accelerated at the forward shock has been modelled within the external shock scenario ^{7,8,19,24,86}. The results of the modeling are overlaid to the data in Fig. 3, and Extended Data Figs. 6 and 7.

We consider two types of power law radial profiles $n(R) = n_0 R^{-s}$ for the external environment: s = 0 (homogeneous medium) and s = 2 (wind-like medium, typical of an environment shaped by the stellar wind of the progenitor). In the last case, we define $n_0 = 3 \times 10^{35} A_{\star} \text{ cm}^{-1}$. We assume that electrons swept up by the shock are accelerated into a power law distribution described by spectral index p: $dN/d\gamma \propto \gamma^{-p}$, where γ is the electron Lorentz factor. We call $\nu_{\rm m}$ the characteristic synchrotron frequency of electrons with Lorentz factor $\gamma_{\rm m}$, $\nu_{\rm c}$ the cooling frequency, and $\nu_{\rm sa}$ the synchrotron self-absorption frequency.

The early time optical emission (up to $\sim 1000 \text{ s}$) and radio emission (up to $\sim 10^5 \text{ s}$) are most likely dominated by reverse shock radiation ¹⁵. Detailed modeling of this component is not discussed in this work, where we focus on forward shock radiation.

The XRT flux (Fig. 1, blue data points) decays as $F_X \propto t^{\alpha_X}$ with $\alpha_X = -1.36 \pm 0.02$. If $\nu_X > max(\nu_m, \nu_c)$, the X-ray light curve is predicted to decay as $t^{(2-3p)/4}$, that implies $p \sim 2.5$.

Extended Data Figure 7: Modeling of the broadband light curves. Modeling of forward shock emission is compared to observations at different frequencies (see legend). The model shown with solid and dashed lines is optimised to describe the high-energy radiation (TeV, GeV and X-ray). It has been obtained with the following parameters: s = 0, $\epsilon_e = 0.07$, $\epsilon_B = 8 \times 10^{-5}$, p = 2.6, $n_0 = 0.5$, and $E_k = 8 \times 10^{53}$ erg. Solid lines show the total flux (synchrotron and SSC), while the dashed line refers to the SSC contribution only. Dotted curves are derived to test a better modeling of observations at lower frequencies, but fail to explain the behaviour of the TeV light curve. These are obtained with the following model parameters: s = 2, $\epsilon_e = 0.6$, $\epsilon_B = 10^{-4}$, p = 2.4, $A_* = 0.1$, and $E_k = 4 \times 10^{53}$ erg.

Another possibility is to assume $\nu_{\rm m} < \nu_{\rm X} < \nu_{\rm c}$, which implies p = 2.1 - 2.2 for s = 2 and $p \sim 2.8$ for s = 0. A broken power law fit provides a better fit $(5.3 \times 10^{-5} \text{ probability of chance}$ improvement), with a break occurring around 4×10^4 s and decay indices $\alpha_{\rm X,1} \sim -1.32 \pm 0.03$ and $\alpha_{\rm X,2} \sim -1.55 \pm 0.04$. This behaviour can be explained by the passage of $\nu_{\rm c}$ in the XRT band and assuming again p = 2.4 - 2.5 for s = 2 and $p \sim 2.8$ for s = 0.

The optical light curve starts displaying a shallow decay in time (with temporal index poorly 621 constrained, between -0.5 and -0.25) starting from $\sim 2 \times 10^3$ s, followed by a steepening around 622 8×10^4 s, when the temporal decay becomes similar to the decay in X-ray band, suggesting that after 623 this time the X-ray and optical band lie in the same part of the synchrotron spectrum. If the break 624 is interpreted as the synchrotron characteristic frequency $\nu_{\rm m}$ crossing the optical band, after the 625 break the observed temporal decay requires a steep value of $p \sim 3$ for s = 0 and a value between 626 p = 2.4 and p = 2.5 for s = 2. Independently of the density profile of the external medium and on 627 the cooling regime of the electrons, $\nu_{\rm m} \propto t^{-3/2}$, placing it the soft X-ray band at 10^2 s. The SED at 628 ~ 100 s is indeed characterised by a peak in between 5-30 keV (Fig. 3). Information on the location 629 of the self-absorption frequency are provided by observations at 1 GHz, showing that $\nu_{\rm sa} \sim 1 \, {\rm GHz}$ 630 at 10^5 s (Extended Data Fig. 6). 631

Summarizing, in a wind-like scenario X-ray and optical emission and their evolution in time can be explained if p = 2.4 - 2.5, the emission is initially in fast cooling regime and transitions to a slow cooling regime around 3×10^3 s. The optical spectral index at late times is predicted to be $(1 - p)/2 \sim -0.72$, in agreement with observations. $\nu_{\rm m}$ crosses the optical band at $t \sim 8 \times 10^4$ s, explaining the steepening of the optical light curve and the flattening of the optical spectrum.

The X-ray band initially lies above (or close to) $\nu_{\rm m}$, and the break frequency $\nu_{\rm c}$ starts crossing 637 the X-ray band around $2 - 4 \times 10^4$ s, producing the steepening in the decay rate (the cooling 638 frequency increases with time for s = 2). In this case, before the temporal break, the decay rate 639 is related to the spectral index of the electron energy distribution by $\alpha_{\rm X,1} = (2-3p)/4 \sim -1.3$, 640 for $p \sim 2.4 - 2.5$. Well after the break, this value of p predicts a decay rate $\alpha_{X,1} = (1 - 3p)/4 =$ 641 -1.55-1.62. Overall, this interpretation is also consistent with the fact that the late time ($t > 10^5$ s) 642 X-ray and optical light curves display similar temporal decays (Fig.1), as they lie in the same part 643 of the synchrotron spectrum ($\nu_{\rm m} < \nu_{\rm opt} < \nu_{\rm X} < \nu_{\rm c}$). A similar picture can be invoked to explain 644 the emission also assuming a homogeneous density medium, but a steeper value of p is required. 645 In this case, however, no break is predicted in the X-ray light curve. 646

⁶⁴⁷ We now add to the picture the information brought by the TeV detection. The modeling is ⁶⁴⁸ built with reference to the MAGIC flux and spectral indices derived considering statistical errors ⁶⁴⁹ only (see Extended Data Table 1 and green data points in Extended Data Fig. 2). The light curve ⁶⁵⁰ decays in time as $t^{-1.51}$ and the photon index is consistent within $\sim 1\sigma$ with $\Gamma_{ph,TeV} \sim -2.5$ for ⁶⁵¹ the entire duration of the emission, although there is evidence for an evolution from harder (~ -2) ⁶⁵² to softer (~ -2.8) values. In the first broadband SED (Fig. 3, 68-110 s), LAT observations provide ⁶⁵³ strong evidence for the presence of two separated spectral peaks.

Assuming Thomson scattering, the SSC peak is given by:

$$\nu_{\rm peak}^{\rm SSC} \simeq 2\,\gamma_{\rm e}^2 \nu_{\rm peak}^{\rm syn} \tag{1}$$

while in KN regime, the SSC peak should be located at:

$$h\nu_{\rm peak}^{\rm SSC} \simeq 2\,\gamma_{\rm e}\,\Gamma\,m_{\rm e}\,c^2/(1+z)$$
 (2)

where $\gamma_{\rm e} = \min(\gamma_{\rm c}, \gamma_{\rm m})$. The synchrotron spectral peak is located at $E_{\rm peak}^{\rm syn} \sim 10$ keV, while 656 the peak of the SSC component must be below $E_{\rm peak}^{\rm ssc} \lesssim 100\,{\rm GeV}$ to explain the MAGIC photon 657 index. Both the KN and Thomson scattering regimes imply $\gamma_{
m e} \lesssim 10^3$. This small value faces 658 two problems: i) if the bulk Lorentz factor Γ is larger than 150 (that is a necessary condition to 659 avoid strong γ - γ opacity, see below), a small γ_m translates into a small efficiency of the electron 660 acceleration, with $\epsilon_{\rm e} < 0.05$, ii) the synchrotron peak energy can be located at $E_{\rm peak}^{\rm syn} \sim 10 \, {\rm keV}$ 661 only for $B\Gamma\gtrsim 10^5\,{
m G}.$ Large B and small $\epsilon_{
m e}$ would make difficult to explain the presence of a 662 strong SSC emission. These calculations show that γ - γ opacity likely plays **a** role in shaping and 663 softening the observed spectra of the SSC spectrum^{30,87}. 664

For a gamma-ray photon with energy E_{γ} , the $\tau_{\gamma\gamma}$ opacity is:

$$\tau_{\gamma\gamma}(E_{\gamma}) = \sigma_{\gamma\gamma}\left(R/\Gamma\right) n_{\rm t}(E_{\gamma})\,,\tag{3}$$

where $n_{\rm t} = L_{\rm t}/(4 \pi R^2 c \Gamma E_{\rm t})$ is the density of target photons in the comoving frame, $L_{\rm t}$ is the luminosity and $E_{\rm t} = (m_{\rm e} c^2)^2 \Gamma^2 / E_{\gamma} / (1+z)^2$ is the energy of target photons in the observer frame. Target photons for photons with energy $E_{\gamma} = 0.2 - 1$ TeV and for $\Gamma \sim 120 - 150$ have energies in the range 4 - 30 keV. When $\gamma - \gamma$ absorption is relevant, the emission from pairs can give a non-negligible contribution to the radiative output.

To properly model all the physical processes that are shaping the broadband radiation, we use a numerical code that solves the evolution of the electron distributions and derives the radiative output taking into account the following processes: synchrotron and SSC losses, adiabatic losses, $\gamma - \gamma$ absorption, emission from pairs, and synchrotron self-absorption^{88–91}. We find that for the parameters assumed in the proposed modeling (see below), the contribution from pairs to the emission is negligible.

The MAGIC photon index (Extended Data Table 1) and its evolution with time constrain the 677 SSC peak energy to be at $\lesssim 1 \text{ TeV}$ at the beginning of observations (Extended Data Table 1). In 678 general the internal opacity decreases with time and KN effects become less relevant. A possible 679 softening of the spectrum with time, as the one suggested by the observations, requires that the 680 spectral peak decreases with time and moves below the MAGIC energy range. In the slow cooling 681 regime, the SSC peak evolves to higher frequencies for a wind-like medium and decreases very 682 slowly ($\nu_{\rm peak}^{\rm SSC} \propto t^{-1/4}$) for a constant-density medium (both in KN and Thomson regimes). In fast 683 cooling regime the evolution is faster ($\nu_{\rm peak}^{\rm SSC} \propto t^{-1/2} - t^{-9/4}$ depending on medium and regime). 684

We model the **multi-band** observations considering both s = 0 and s = 2. The results are shown in Fig. 3, Extended Data Figs. 6 and 7 where model curves are overlaid to observations. The model curves shown in these figures have been derived using the following parameters. The model in Fig. 3 and in 7 (solid and dashed curves) we have used s = 0, $\epsilon_e = 0.07$, $\epsilon_B = 8 \times 10^{-5}$, p = 2.6, $n_0 = 0.5$, and $E_k = 8 \times 10^{53}$ erg. For the dotted curves in Extended Data Fig. 7 and the SEDs in Extended Data Figs. 6 we have used s = 2, $\epsilon_e = 0.6$, $\epsilon_B = 10^{-4}$, p = 2.4, $A_* = 0.1$, and $E_k = 4 \times 10^{53}$ erg.

692

Using the constraints on the afterglow onset time ($t_{\rm peak}^{\rm aft} \sim 5 - 10 \, {\rm s}$ from the smooth compo-

⁶⁹³ nent detected during the prompt emission) the initial bulk Lorentz factor is constrained to assume ⁶⁹⁴ values $\Gamma_0 \sim 300$ and $\Gamma_0 \sim 700$ for s = 2 and s = 0, respectively.

Consistently with **the** qualitative description above, we find that late time optical observa-695 tions can indeed be explained with $\nu_{\rm m}$ crossing the band (see the SED modeling in Extended Data 696 Fig. 6 and dotted curves in Extended Data Fig. 7). However a large $\nu_{\rm m}$ is required in this case 697 and consequently also the peak of the SSC component would be large and lie above the MAGIC 698 energy range. The resulting MAGIC light curve (green dotted curve in Extended Data Fig. 7) does 699 not agree with observations. Relaxing the requirement on $\nu_{\rm m}$, the TeV spectra (Fig. 3) and light 700 curve (green solid curve in Extended Data Fig. 7) can be explained. As noted before, a wind-like 701 medium can explain the steepening of the X-ray light curve at 8×10^4 s, while in a homogeneous 702 medium no steepening is expected (blue dotted and solid lines in Extended Data Fig. 7). We find 703 that the GeV flux detected by LAT at late time ($t \sim 10^4$ s) is dominated by the SSC component 704 (dashed line in Extended Data Fig. 7). 705

706

- ⁷⁰⁹ 1. Mészáros, P. Theories of Gamma-Ray Bursts. ARA&A **40**, 137–169 (2002).
- 2. Piran, T. The physics of gamma-ray bursts. *Reviews of Modern Physics* **76**, 1143–1210 (2004).
- 3. van Paradijs, J., Kouveliotou, C. & Wijers, R. A. M. J. Gamma-Ray Burst Afterglows.
 ARA&A 38, 379–425 (2000).
- 4. Gehrels, N., Ramirez-Ruiz, E. & Fox, D. B. Gamma-Ray Bursts in the Swift Era. ARA&A

- **47**, 567–617 (2009).
- ⁷¹⁴ 5. Gehrels, N. & Mészáros, P. Gamma-Ray Bursts. *Science* **337**, 932 (2012).
- 6. Kumar, P. & Zhang, B. The physics of gamma-ray bursts & relativistic jets. Phys. Rep. 561,
 1–109 (2015).
- 7. Sari, R., Piran, T. & Narayan, R. Spectra and Light Curves of Gamma-Ray Burst Afterglows.
 ApJ 497, L17–L20 (1998).
- 8. Granot, J. & Sari, R. The Shape of Spectral Breaks in Gamma-Ray Burst Afterglows. ApJ
 568, 820–829 (2002).
- 9. Meszaros, P. & Rees, M. J. Delayed GEV Emission from Cosmological Gamma-Ray Bursts Impact of a Relativistic Wind on External Matter. MNRAS 269, L41 (1994).
- 10. MAGIC-Collaboration. Teraelectronvolt emission from a gamma-ray burst. *Nature* (2019).
- 11. Nava, L. High-energy emission from gamma-ray bursts. *International Journal of Modern Physics D* 27, 1842003 (2018).
- 12. Mirzoyan, R. First time detection of a GRB at sub-TeV energies; MAGIC detects the GRB
 190114C. *The Astronomer's Telegram* 12390 (2019).
- 13. Ajello, M. et al. Fermi and Swift Observations of GRB 190114C: Tracing the Evolution of
- High-Energy Emission from Prompt to Afterglow. *arXiv e-prints* arXiv:1909.10605 (2019).
- ⁷³⁰ 14. Ravasio, M. E. et al. GRB 190114C: from prompt to afterglow? A&A 626, A12 (2019).

- ⁷³¹ 15. Laskar, T. *et al.* ALMA Detection of a Linearly Polarized Reverse Shock in GRB 190114C.
 ⁷³² ApJ **878**, L26 (2019).
- ⁷³³ 16. Vietri, M. GeV Photons from Ultrahigh Energy Cosmic Rays Accelerated in Gamma Ray
 ⁷³⁴ Bursts. *Physical Review Letters* **78**, 4328–4331 (1997).
- ⁷³⁵ 17. Zhang, B. & Mészáros, P. High-Energy Spectral Components in Gamma-Ray Burst After⁷³⁶ glows. ApJ **559**, 110–122 (2001).
- ⁷³⁷ 18. Razzaque, S. A Leptonic-Hadronic Model for the Afterglow of Gamma-ray Burst 090510.
 ⁷³⁸ ApJ **724**, L109–L112 (2010).
- ⁷³⁹ 19. Sari, R. & Esin, A. A. On the Synchrotron Self-Compton Emission from Relativistic Shocks
 ⁷⁴⁰ and Its Implications for Gamma-Ray Burst Afterglows. ApJ **548**, 787–799 (2001).
- 20. Mészáros, P., Razzaque, S. & Zhang, B. GeV-TeV emission from γ-ray bursts. New A Rev. 48, 445–451 (2004).
- ⁷⁴³ 21. Lemoine, M. The synchrotron self-Compton spectrum of relativistic blast waves at large Y.
 ⁷⁴⁴ MNRAS 453, 3772–3784 (2015).
- ⁷⁴⁵ 22. Fan, Y.-Z. & Piran, T. High-energy γ -ray emission from gamma-ray bursts before GLAST.

746 Frontiers of Physics in China **3**, 306–330 (2008).

⁷⁴⁷ 23. Galli, A. & Piro, L. Prospects for detection of very high-energy emission from GRB in the
⁷⁴⁸ context of the external shock model. A&A 489, 1073–1077 (2008).

- ⁷⁴⁹ 24. Nakar, E., Ando, S. & Sari, R. Klein-Nishina Effects on Optically Thin Synchrotron and
 ⁷⁵⁰ Synchrotron Self-Compton Spectrum. ApJ **703**, 675–691 (2009).
- ⁷⁵¹ 25. Xue, R. R. *et al.* Very High Energy γ-Ray Afterglow Emission of Nearby Gamma-Ray Bursts.
 ⁷⁵² ApJ **703**, 60–67 (2009).
- Piran, T. & Nakar, E. On the External Shock Synchrotron Model for Gamma-ray Bursts' GeV
 Emission. ApJ **718**, L63–L67 (2010).
- 755 27. Tam, P.-H. T., Tang, Q.-W., Hou, S.-J., Liu, R.-Y. & Wang, X.-Y. Discovery of an Extra Hard
- Spectral Component in the High-energy Afterglow Emission of GRB 130427A. ApJ 771, L13
 (2013).
- ⁷⁵⁸ 28. Liu, R.-Y., Wang, X.-Y. & Wu, X.-F. Interpretation of the Unprecedentedly Long-lived High ⁷⁵⁹ energy Emission of GRB 130427A. ApJ **773**, L20 (2013).
- ⁷⁶⁰ 29. Ackermann, M. *et al.* Fermi-LAT Observations of the Gamma-Ray Burst GRB 130427A.
 ⁷⁶¹ Science 343, 42–47 (2014).
- ⁷⁶² 30. Wang, X.-Y., Liu, R.-Y., Zhang, H.-M., Xi, S.-Q. & Zhang, B. Synchrotron self-Compton
 ⁷⁶³ emission from afterglow shocks as the origin of the sub-TeV emission in GRB 180720B and
 ⁷⁶⁴ GRB 190114C. *arXiv e-prints* arXiv:1905.11312 (2019).

⁷⁶⁶ 32. Kocevski, D. *et al.* GRB 190114C: Fermi-LAT detection. *GRB Coordinates Network* 23709
 ⁷⁶⁷ (2019).

⁷⁶⁵ 31. Hamburg, R. GRB 190114C: Fermi GBM detection. *GRB Coordinates Network* 23707 (2019).

- ⁷⁶⁸ 33. Gropp, J. D. GRB 190114C: Swift detection of a very bright burst with a bright optical
 ⁷⁶⁹ counterpart. *GRB Coordinates Network* 23688 (2019).
- 34. Ursi, A. *et al.* GRB 190114C: AGILE/MCAL detection. *GRB Coordinates Network* 23712 (2019).
- 772 35. Frederiks, D. *et al.* Konus-Wind observation of GRB 190114C. *GRB Coordinates Network* 773 23737 (2019).
- 36. Minaev, P. & Pozanenko, A. GRB 190114C: SPI-ACS/INTEGRAL extended emission detection. *GRB Coordinates Network* 23714 (2019).
- 37. Xiao, S. *et al.* GRB 190114C:Insight-HXMT/HE detection. *GRB Coordinates Network* 23716
 (2019).
- 778 38. Tavani, M. et al. The AGILE Mission. Astron. Astrophys. 502, 995–1013 (2009).
- ⁷⁷⁹ 39. Goldstein, A. *et al.* The Fermi GBM Gamma-Ray Burst Spectral Catalog: The First Two
 ⁷⁸⁰ Years. ApJS **199**, 19 (2012).
- ⁷⁸¹ 40. Meegan, C. *et al.* The Fermi Gamma-ray Burst Monitor. ApJ **702**, 791–804 (2009).
- ⁷⁸² 41. Barthelmy, S. D. *et al.* The Burst Alert Telescope (BAT) on the SWIFT Midex Mission.
 ⁷⁸³ Space Sci. Rev. **120**, 143–164 (2005).
- 42. Atwood, A. A., W. B.Abdo *et al.* The Large Area Telescope on the Fermi Gamma-Ray Space
 Telescope Mission. ApJ 697, 1071–1102 (2009).

- 43. Kocevski, D. *et al.* GRB 190114C: Fermi-LAT detection. *GRB Coordinates Network* 23709
 (2019).
- ⁷⁸⁸ 44. Aleksić, J. *et al.* The major upgrade of the MAGIC telescopes, Part II: A performance study
 ⁷⁸⁹ using observations of the Crab Nebula. *Astroparticle Physics* **72**, 76–94 (2016).
- ⁷⁹⁰ 45. Ahnen, M. L. *et al.* Performance of the MAGIC telescopes under moonlight. *Astroparticle* ⁷⁹¹ *Physics* 94, 29–41 (2017).
- ⁷⁹² 46. Domínguez, A. *et al.* Extragalactic background light inferred from AEGIS galaxy-SED-type
 ⁷⁹³ fractions. MNRAS **410**, 2556–2578 (2011).
- 47. Franceschini, A., Rodighiero, G. & Vaccari, M. Extragalactic optical-infrared background ra diation, its time evolution and the cosmic photon-photon opacity. A&A 487, 837–852 (2008).
- ⁷⁹⁶ 48. Finke, J. D., Razzaque, S. & Dermer, C. D. Modeling the Extragalactic Background Light
 ⁷⁹⁷ from Stars and Dust. ApJ **712**, 238–249 (2010).
- ⁷⁹⁸ 49. Gilmore, R. C., Somerville, R. S., Primack, J. R. & Domínguez, A. Semi-analytic modelling
 of the extragalactic background light and consequences for extragalactic gamma-ray spectra.
 ⁸⁰⁰ MNRAS 422, 3189–3207 (2012).
- 50. UK Swift Science Data Centre. GRB 190114C Swift/XRT Light Curve. https://www.
 swift.ac.uk/xrt_curves/00883832/.
- 51. Evans, P. A. *et al.* Methods and results of an automatic analysis of a complete sample of
 Swift-XRT observations of GRBs. MNRAS 397, 1177–1201 (2009).

- 52. Greiner, J. *et al.* GROND—a 7-Channel Imager. *Publications of the Astronomical Society of the Pacific* **120**, 405 (2008).
- 53. Tody, D. IRAF in the Nineties. In Hanisch, R. J., Brissenden, R. J. V. & Barnes, J. (eds.)
 Astronomical Data Analysis Software and Systems II, vol. 52 of Astronomical Society of the
 Pacific Conference Series, 173 (1993).
- 54. Krühler, T. *et al.* The 2175 Å Dust Feature in a Gamma-Ray Burst Afterglow at Redshift 2.45.
 ApJ 685, 376–383 (2008).
- ⁸¹² 55. Bolmer, J. *et al.* Dust reddening and extinction curves toward gamma-ray bursts at z > 4. ⁸¹³ A&A **609**, A62 (2018).
- 56. Castro-Tirado, A. J. *et al.* A very sensitive all-sky CCD camera for continuous recording of
 the night sky. In Proc. SPIE, vol. 7019 of *Society of Photo-Optical Instrumentation Engineers*(SPIE) Conference Series, 70191V (2008).
- 57. Cepa, J. *et al.* OSIRIS tunable imager and spectrograph. In Iye, M. & Moorwood, A. F. (eds.)
 Optical and IR Telescope Instrumentation and Detectors, vol. 4008 of Proc. SPIE, 623–631
 (2000).
- 58. Castro-Tirado, A. GRB 190114C: refined redshift by the 10.4m GTC. *GRB Coordinates Network* 23708 (2019).
- 59. de Ugarte Postigo, A. *et al.* The distribution of equivalent widths in long GRB afterglow
 spectra. A&A 548, A11 (2012).

824	60. Steele, I. A. et al. The Liverpool Telescope: performance and first results. In Oschmann, J. M.,
825	Jr. (ed.) Ground-based Telescopes, vol. 5489 of Proc. SPIE, 679-692 (2004).

61. Chambers, K. C. et al. The Pan-STARRS1 Surveys. arXiv e-prints (2016).

- 62. Tarenghi, M. & Wilson, R. N. The ESO NTT (New Technology Telescope): The first active
- optics telescope. In Roddier, F. J. (ed.) *Active telescope systems*, vol. 1114 of *Society of Photo-*

Optical Instrumentation Engineers (SPIE) Conference Series, 302–313 (1989).

63. Smartt, S. J. et al. PESSTO: survey description and products from the first data release by the

Public ESO Spectroscopic Survey of Transient Objects. A&A **579**, A40 (2015).

64. Covino, S. et al. REM: a fully robotic telescope for GRB observations. In Moorwood, A.

F. M. & Iye, M. (eds.) Ground-based Instrumentation for Astronomy, vol. 5492 of Society of

Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 1613–1622 (2004).

- 65. Roming, P. W. A. *et al.* The Swift Ultra-Violet/Optical Telescope. Space Sci. Rev. **120**, 95–142
 (2005).
- ⁸³⁷ 66. Siegel, M. H. & Gropp, J. D. GRB 190114C: Swift/UVOT Detection. *GRB Coordinates* Network 23725 (2019).

68. Breeveld, A. A. *et al.* An Updated Ultraviolet Calibration for the Swift/UVOT. In *American Institute of Physics Conference Series*, vol. 1358, 373–376 (2011).

^{67.} Poole, T. S. *et al.* Photometric calibration of the Swift ultraviolet/optical telescope. MNRAS
383, 627–645 (2008).

- 69. Kuin, N. P. M. *et al.* Calibration of the Swift-UVOT ultraviolet and visible grisms. MNRAS
 449, 2514–2538 (2015).
- 70. Arnouts, S. *et al.* Measuring and modelling the redshift evolution of clustering: the Hubble
 Deep Field North. MNRAS **310**, 540–556 (1999).
- 71. Ilbert, O. *et al.* Accurate photometric redshifts for the CFHT legacy survey calibrated using
 the VIMOS VLT deep survey. A&A 457, 841–856 (2006).
- 72. Covino, S. *et al.* Dust extinctions for an unbiased sample of gamma-ray burst afterglows.
 MNRAS 432, 1231–1244 (2013).
- 73. Schlafly, E. F. & Finkbeiner, D. P. Measuring Reddening with Sloan Digital Sky Survey Stellar
 Spectra and Recalibrating SFD. ApJ **737**, 103 (2011).
- 74. McMullin, J. P., Waters, B., Schiebel, D., Young, W. & Golap, K. CASA Architecture and
- Applications. In Shaw, R. A., Hill, F. & Bell, D. J. (eds.) *Astronomical Data Analysis Software and Systems XVI*, vol. 376 of *Astronomical Society of the Pacific Conference Series*, 127
 (2007).
- 75. Wilson, W. E. *et al.* The Australia Telescope Compact Array Broad-band Backend: description
 and first results. MNRAS 416, 832–856 (2011).
- 76. Sault, R. J., Teuben, P. J. & Wright, M. C. H. A Retrospective View of MIRIAD. In Shaw,
- R. A., Payne, H. E. & Hayes, J. J. E. (eds.) Astronomical Data Analysis Software and Systems
- *IV*, vol. 77 of *Astronomical Society of the Pacific Conference Series*, 433 (1995).

- ⁸⁶² 77. Swarup, G. *et al.* The Giant Metre-Wave Radio Telescope. *Current Science, Vol. 60,* ⁸⁶³ NO.2/JAN25, P. 95, 1991 60, 95 (1991).
- 78. Cherukuri, S. V. *et al.* GRB 190114C: GMRT detection at 1.26GHz. *GRB Coordinates Net- work* 23762 (2019).
- 79. Tremou, L. *et al.* GRB 190114C: MeerKAT radio observation. *GRB Coordinates Network* 23760 (2019).
- 868 80. Camilo, F. *et al.* Revival of the Magnetar PSR J1622-4950: Observations with MeerKAT,
 869 Parkes, XMM-Newton, Swift, Chandra, and NuSTAR. ApJ 856, 180 (2018).
- 81. Jonas, J. & MeerKAT Team. The MeerKAT Radio Telescope. In *Proceedings of MeerKAT Science: On the Pathway to the SKA. 25-27 May*, 1 (2016).
- 872 82. Fender, R. *et al.* ThunderKAT: The MeerKAT Large Survey Project for Image-Plane Radio
 873 Transients. *arXiv e-prints* arXiv:1711.04132 (2017).
- 874 83. Mohan, N. & Rafferty, D. PyBDSF: Python Blob Detection and Source Finder (2015).
- 875 84. Holland, W. S. *et al.* SCUBA-2: the 10 000 pixel bolometer camera on the James Clerk
 876 Maxwell Telescope. MNRAS 430, 2513–2533 (2013).
- 877 85. Bošnjak, Ž., Daigne, F. & Dubus, G. Prompt high-energy emission from gamma-ray bursts in
 878 the internal shock model. A&A 498, 677–703 (2009).
- 879 86. Panaitescu, A. & Kumar, P. Analytic Light Curves of Gamma-Ray Burst Afterglows: Homo-
- geneous versus Wind External Media. ApJ **543**, 66–76 (2000).

- 87. Derishev, E. & Piran, T. The Physical Conditions of the Afterglow Implied by MAGIC's
 Sub-TeV Observations of GRB 190114C. ApJ 880, L27 (2019).
- 883 88. Mastichiadis, A. & Kirk, J. G. Self-consistent particle acceleration in active galactic nuclei.
 A&A 295, 613 (1995).
- 885 89. Vurm, I. & Poutanen, J. Time-Dependent Modeling of Radiative Processes in Hot Magnetized
 Plasmas. ApJ 698, 293–316 (2009).
- 90. Petropoulou, M. & Mastichiadis, A. On the multiwavelength emission from gamma ray burst
 afterglows. A&A 507, 599–610 (2009).
- Pennanen, T., Vurm, I. & Poutanen, J. Simulations of gamma-ray burst afterglows with a
 relativistic kinetic code. A&A 564, A77 (2014).

Author Information The authors declare no competing interests. Correspondence and requests for materials should be addressed to Razmik Mirzoyan (email: razmik.mirzoyan@mpp.mpg.de) or MAGIC (email: contact.magic@mpp.mpg.de).

Acknowledgements The MAGIC Collaboration would like to thank the Instituto de Astrofísica de Canarias for the excellent working conditions at the Observatorio del Roque de los Muchachos in La Palma. The financial support of the German BMBF and MPG, the Italian INFN and INAF, the Swiss National Fund SNF, the ERDF under the Spanish MINECO (FPA2017-87859-P, FPA2017-85668-P, FPA2017-82729-C6-2-R, FPA2017-82729-C6-6-R, FPA2017-82729-C6-5-R, AYA2015-71042-P, AYA2016-76012-C3-1-P, ESP2017-87055-C2-2-P, FPA201790566REDC), the Indian Department of Atomic Energy, the Japanese

JSPS and MEXT, the Bulgarian Ministry of Education and Science, National RI Roadmap Project DO1-900 153/28.08.2018 and the Academy of Finland grant nr. 320045 is gratefully acknowledged. This work 901 was also supported by the Spanish Centro de Excelencia "Severo Ochoa" SEV-2016-0588 and SEV-2015-902 0548, and Unidad de Excelencia "María de Maeztu" MDM-2014-0369, by the Croatian Science Foun-903 dation (HrZZ) Project IP-2016-06-9782 and the University of Rijeka Project 13.12.1.3.02, by the DFG 904 Collaborative Research Centers SFB823/C4 and SFB876/C3, the Polish National Research Centre grant 905 UMO-2016/22/M/ST9/00382 and by the Brazilian MCTIC, CNPq and FAPERJ. L. Nava acknowledges 906 funding from the European Union's Horizon 2020 Research and Innovation programme under the Marie 907 Skłodowska-Curie grant agreement n. 664931. E. Moretti acknowledges funding from the European Union's 908 Horizon 2020 research and innovation programme under Marie Skłodowska-Curie grant agreement No 909 This paper makes use of the following ALMA data: ADS/JAO.ALMA#2018.A.00020.T, 665919. 910 ADS/JAO.ALMA#2018.1.01410.T. ALMA is a partnership of ESO (representing its member states), NSF 91 (USA) and NINS (Japan), together with NRC (Canada), MOST and ASIAA (Taiwan), and KASI (Repub-912 lic of Korea), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by 913 ESO, AUI/NRAO and NAOJ. CT, AdUP, and DAK acknowledge support from the Spanish research project 914 AYA2017-89384-P. C. Thoene and A. de Ugarte Postigo acknowledge support from funding associated to 915 Ramón y Cajal fellowships (RyC-2012-09984 and RyC-2012-09975). D. A. Kann acknowledges support 916 from funding associated to Juan de la Cierva Incorporación fellowships (IJCI-2015-26153). The James Clerk 917 Maxwell Telescope is operated by the East Asian Observatory on behalf of The National Astronomical Ob-918 servatory of Japan; Academia Sinica Institute of Astronomy and Astrophysics; the Korea Astronomy and 919 Space Science Institute; Center for Astronomical Mega-Science (as well as the National Key R&D Program 920 of China with No. 2017YFA0402700). Additional funding support is provided by the Science and Tech-921 nology Facilities Council of the United Kingdom and participating universities in the United Kingdom and 922

Canada. The JCMT data reported here were obtained under project M18BP040 (P.I. D. Perley). We thank 923 Mark Rawlings, Kevin Silva, Sheona Urquart, and the JCMT staff for the prompt support of these observa-924 tions. The Liverpool Telescope, located on the island of La Palma in the Spanish Observatorio del Roque de 925 los Muchachos of the Instituto de Astrofisica de Canarias, is operated by Liverpool John Moores University 926 with financial support from the UK Science and Technology Facilities Council. The Australia Telescope 927 Compact Array is part of the Australia Telescope National Facility which is funded by the Australian Gov-928 ernment for operation as a National Facility managed by CSIRO. GEA is the recipient of an Australian 929 Research Council Discovery Early Career Researcher Award (project number DE180100346) and JCAM-J 930 is the recipient of Australian Research Council Future Fellowship (project number FT140101082) funded by 931 the Australian Government. Support for the German contribution to GBM was provided by the Bundesmin-932 isterium für Bildung und Forschung (BMBF) via the Deutsches Zentrum für Luft und Raumfahrt (DLR) 933 under grant number 50 QV 0301. The UAH coauthors gratefully acknowledge NASA funding from coop-934 erative agreement NNM11AA01A. C.A.W.H., and C.M.H. gratefully acknowledge NASA funding through 935 the *Fermi*-GBM project. 936

The Fermi LAT Collaboration acknowledges generous ongoing support from a number of agencies and in-937 stitutes that have supported both the development and the operation of the LAT as well as scientific data 938 analysis. These include the National Aeronautics and Space Administration and the Department of Energy 939 in the United States, the Commissariat à l'Energie Atomique and the Centre National de la Recherche Sci-940 entifique / Institut National de Physique Nucléaire et de Physique des Particules in France, the Agenzia 941 Spaziale Italiana and the Istituto Nazionale di Fisica Nucleare in Italy, the Ministry of Education, Cul-942 ture, Sports, Science and Technology (MEXT), High Energy Accelerator Research Organization (KEK) and 943 Japan Aerospace Exploration Agency (JAXA) in Japan, and the K. A. Wallenberg Foundation, the Swedish 944 Research Council and the Swedish National Space Board in Sweden. 945

Additional support for science analysis during the operations phase is gratefully acknowledged from the
Istituto Nazionale di Astrofisica in Italy and the Centre National d'Études Spatiales in France. This work
performed in part under DOE Contract DE-AC02-76SF00515.

Part of the funding for GROND (both hardware as well as personnel) was generously granted from the
Leibniz-Prize to Prof. G. Hasinger (DFG grant HA 1850/28-1). Swift data were retrieved from the Swift
archive at HEASARC/NASA-GSFC, and from the UK Swift Science Data Centre. Support for Swift in the
UK is provided by the UK Space Agency

This work is based on observations obtained with XMM-Newton, an ESA science mission with instruments
and contributions directly funded by ESA Member States and NASA.

This work is partially based on observations collected at the European Organisation for Astronomical Re-955 search in the Southern Hemisphere under ESO programme 199.D-0143. The work is partly based on ob-956 servations made with the Gran Telescopio Canarias (GTC), installed in the Spanish Observatorio del Roque 957 de los Muchachos of the Instituto de Astrofísica de Canarias, in the island of La Palma. This work is par-958 tially based on observations made with the Nordic Optical Telescope (programme 58-502), operated by the 959 Nordic Optical Telescope Scientific Association at the Observatorio del Roque de los Muchachos, La Palma, 960 Spain, of the Instituto de Astrofísica de Canarias. This work is partially based on observations collected at 961 the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programme 962 102.D-0662. This work is partially based on observations collected through the ESO programme 199.D-963 0143 ePESSTO. M. Gromadzki is supported by the Polish NCN MAESTRO grant 2014/14/A/ST9/00121. 964 M. Nicholl is supported by a Royal Astronomical Society Research Fellowship M. G. Bernardini, S. Cam-965 pana, A. Melandri and P. D'Avanzo acknowledge ASI grant I/004/11/3. S. Campana thanks for support the 966 implementing agreement ASI-INAF n.2017-14-H.0. S. J. Smartt acknowledges funding from STFC Grant 967

Ref: ST/P000312/1. NPMK acknowledges support by the UK Space Agency under grant ST/P002323/1 968 and the UK Science and Technology Facilities Council under grant ST/N00811/1. L. Piro, S. Lotti acknowl-969 edge partial support from the agreement ASI-INAF n.2017-14-H.0. VAF acknowledges RFBR 18-29-21030 970 for support. AJCT acknowledges support from the Junta de Andalucía (Project P07-TIC-03094) and sup-971 port from the Spanish Ministry Projects AYA2012-39727-C03-01 and 2015-71718R. KM acknowledges the 972 support from Department of Science and Technology (DST), Govt. of India and Indo-US Science and Tech-973 nology Forum (IUSSTF) for the WISTEMM fellowship and Dept. of Physics, UC Davis where a part of this 974 work was carried out. M.J.M. acknowledges the support of the National Science Centre, Poland through 975 the grant 2018/30/E/ST9/00208. VJ and RL acknowledges support from the grant EMR/2016/007127 from 976 Dept. of Science and Technology, India. K. Maguire acknowledges support from H2020 through an ERC 977 Starting Grant (758638). L. Izzo would like to acknowledge Massimo Della Valle for invaluable support in 978 the operation of the telescope. 979

Author Contributions The MAGIC telescope system was designed and constructed by the MAGIC Col-980 laboration. Operation, data processing, calibration, Monte Carlo simulations of the detector, and of theo-981 retical models, and data analyses were performed by the members of the MAGIC Collaboration, who also 982 discussed and approved the scientific results. L. Nava coordinated the gathering of the data, developed the 983 theoretical interpretation, and wrote the main section and the section on Afterglow Modeling. E. Moretti 984 coordinated the analysis of the MAGIC data, wrote the relevant sections, and, together with F. Longo, co-985 ordinated the collaboration with the Fermi team. D. Miceli, Y. Suda and S. Fukami performed the analysis 986 of the MAGIC data. S. Covino provided support with the analysis of the optical data and the writing of 987 the corresponding sections. Z. Bosnjak performed calculations for the contribution from prompt emission 988 to TeV radiation and wrote the corresponding section. A. Stamerra, D. Paneque and S. Inoue contributed in 989

structuring and editing the paper. A. Berti contributed to editing and finalising the manuscript. R. Mirzoyan
 coordinated and supervised the paper. All MAGIC collaborators contributed to the editing and comments to
 the final version of the manuscript.

S. Campana and M. G. Bernardini extracted the spectra and performed the spectral analysis of Swift/BAT 993 and Swift/XRT data. N. P. M. Kuin derived the photometry for the Swift/UVOT event mode data, and the uv 994 grism exposure. M. H. Siegel derived the image mode Swift UVOT photometry. A. de Ugarte Postigo was 995 principal investigator of ALMA program 2018.1A.00020.T, triggered these observations and performed 996 photometry. S. Martin reduced the ALMA Band 6 data. C. C. Thöne, S. Schulze, D. A. Kann, and M. 997 Michałowski participated in the ALMA DDT proposal preparation, observations, and scientific analysis of 998 the data. D. A. Perley was principal investigator of ALMA program 2018.1.01410.T and triggered these 999 observations, and was also principal investigator of the LT programme and the JCMT programme. A. M. 1000 Cockeram analyzed the ALMA Band 3 and LT data, and wrote the LT text. S. Schulze contributed to the 1001 development of the ALMA Band 3 observing programme. I. A. Smith triggered the JCMT programme, 1002 analyzed the data, and wrote the associated text. N. R. Tanvir contributed to the development of the JCMT 1003 programme. D. A. Kann and C. C. Thöne triggered and coordinated the X-shooter observations. D. A. Kann 1004 independently checked the optical light curve analysis.K. Misra was the principal investigator of the GMRT 1005 programme 35_018. S. V. Cherukuri and V. Jaiswal analyzed the data. L. Resmi contributed to the observa-1006 tion plan and data analysis. E.T., I.H. and R.D. have performed the MeerKAT data analysis. G. Anderson, 1007 A. Moin, S. Schulze and E. Troja were principal investigator of ATCA program CX424. G. Anderson, M. 1008 Wieringa and J. Stevens carried out the observations. G. Anderson, G. Bernardi, S. Klose, M. Marongiu, A. 1009 Moin, R. Ricci and M. Wieringa analysed these data. M. Bell, J. Miller-Jones and L. Piro participated to the 1010 ATCA proposal preparation and scientific analysis of the data. The ePESSTO project was delivered by the 1011 following who have contributed to managing, executing, reducing, analysing ESO/NTT data and provided 1012

comments to the manuscript: J. P. Anderson, N. Castro Segura, P. D'Avanzo, M. Gromadzki, C. Inserra, 1013 E. Kankare, K. Maguire, M. Nicholl, F. Ragosta, S. J. Smartt. A. Melandri and A. Rossi reduced and an-1014 alyzed REM data and provided comments to the manuscript. J. Bolmer was responsible for observing the 1015 GRB with GROND as well as for the data reduction and calibration. J. Bolmer and J. Greiner contributed to 1016 the analysis of the data and writing of the text. E. Troja triggered the NuSTAR TOO observations performed 1017 under DDT program, L. Piro requested the XMM-Newton data carried out under DDT program and carried 1018 out the scientific analysis of XMM-Newton and NuSTAR. S. Lotti analyzed the NuSTAR data and wrote the 1019 associated text. A. Tiengo and G. Novara analysed the XMM-Newton data and wrote the associated text. 1020 AJCT led the observing BOOTES and GTC programs. AC, CJPP, EFG, IMC, SBP and XYL analyzed the 1021 BOOTES data whereas AFV, MDCG, RSR, YDH and VVS analyzed the GTC data and interpreted them 1022 accordingly. N. Tanvir created the X-shooter and AIFOSC figures. J. Fynbo, J. Japelj performed the analy-1023 sis of X-shooter and AlFOSC spectra. D. Xu, P. Jakobsson contributed to NOT programme and triggering. 1024 D. Malesani performed photometric analysis of NOT data. E. Peretti contributed to developing the code for 1025 modeling of afterglow radiation. L. Izzo triggered and analysed the OASDG data, while A. Di Dato and A. 1026 Noschese executed the observations at the telescope. 1027

Data Availability Statement Data are available from the corresponding authors upon request.

Code Availability Statement Proprietary data reconstruction codes were generated at the MAGIC telescopes large-scale facility. Information supporting the findings of this study are available from the corresponding authors upon request.