168 research outputs found

    The Feel-Good Effect at Mega Sport Events - Recommendations for Public and Private Administration Informed by the Experience of the FIFA World Cup 2006

    Full text link

    LUMOS - Low and Intermediate Grade Glioma Umbrella Study of Molecular Guided TherapieS at relapse: Protocol for a pilot study

    Full text link
    IntroductionGrades 2 and 3 gliomas (G2/3 gliomas), when combined, are the second largest group of malignant brain tumours in adults. The outcomes for G2/3 gliomas at progression approach the dismal outcomes for glioblastoma (GBM), yet there is a paucity of trials for Australian patients with relapsed G2/3 gliomas compared with patients with GBM. LUMOS will be a pilot umbrella study for patients with relapsed G2/3 gliomas that aims to match patients to targeted therapies based on molecular screening with contemporaneous tumour tissue. Participants in whom no actionable or no druggable mutation is found, or in whom the matching drug is not available, will form a comparator arm and receive standard of care chemotherapy. The objective of the LUMOS trial is to assess the feasibility of this approach in a multicentre study across five sites in Australia, with a view to establishing a national molecular screening platform for patient treatment guided by the mutational analysis of contemporaneous tissue biopsiesMethods and analysisThis study will be a multicentre pilot study enrolling patients with recurrent grade 2/3 gliomas that have previously been treated with radiotherapy and chemotherapy at diagnosis or at first relapse. Contemporaneous tumour tissue at the time of first relapse, defined as tissue obtained within 6 months of relapse and without subsequent intervening therapy, will be obtained from patients. Molecular screening will be performed by targeted next-generation sequencing at the reference laboratory (PathWest, Perth, Australia). RNA and DNA will be extracted from representative formalin-fixed paraffin embedded tissue scrolls or microdissected from sections on glass slides tissue sections following a review of the histology by pathologists. Extracted nucleic acid will be quantified by Qubit Fluorometric Quantitation (Thermo Fisher Scientific). Library preparation and targeted capture will be performed using the TruSight Tumor 170 (TST170) kit and samples sequenced on NextSeq 550 (Illumina) using NextSeq V.2.5 hi output reagents, according to the manufacturer’s instructions. Data analysis will be performed using the Illumina BaseSpace TST170 app v1.02 and a custom tertiary pipeline, implemented within the Clinical Genomics Workspace software platform from PierianDx (also refer to section 3.2). Primary outcomes for the study will be the number of patients enrolled and the number of patients who complete molecular screening. Secondary outcomes will include the proportion of screened patients enrolled; proportion of patients who complete molecular screening; the turn-around time of molecular screening; and the value of a brain tumour specific multi-disciplinary tumour board, called the molecular tumour advisory panel as measured by the proportion of patients in whom the treatment recommendation was refined compared with the recommendations from the automated bioinformatics platform of the reference laboratory testing.Ethics and disseminationThe study was approved by the lead Human Research Ethics Committee of the Sydney Local Health District: Protocol No. X19-0383. The study will be conducted in accordance with the principles of the Declaration of Helsinki 2013, guidelines for Good Clinical Practice and the National Health and Medical Research Council National Statement on Ethical Conduct in Human Research (2007, updated 2018 and as amended periodically). Results will be disseminated using a range of media channels including newsletters, social media, scientific conferences and peer-reviewed publications.Trial registration numberACTRN12620000087954; Pre-results.</jats:sec

    Tsetse GmmSRPN10 has anti-complement activity and is important for successful establishment of trypanosome infections in the fly midgut

    Get PDF
    The complement cascade in mammalian blood can damage the alimentary tract of haematophagous arthropods. As such, these animals have evolved their own repertoire of complement-inactivating factors, which are inadvertently exploited by blood-borne pathogens to escape complement lysis. Unlike the bloodstream stages, the procyclic (insect) stage of Trypanosoma brucei is highly susceptible to complement killing, which is puzzling considering that a tsetse takes a bloodmeal every 2–4 days. In this study, we identified four tsetse (Glossina morsitans morsitans) serine protease inhibitors (serpins) from a midgut expressed sequence tag (EST) library (GmmSRPN3, GmmSRPN5, GmmSRPN9 and GmmSRPN10) and investigated their role in modulating the establishment of a T. brucei infection in the midgut. Although not having evolved in a common blood-feeding ancestor, all four serpins have an active site sharing remarkable homology with the human complement C1-inhibitor serpin, SerpinG1. RNAi knockdown of individual GmmSRPN9 and GmmSRPN10 genes resulted in a significant decreased rate of infection by procyclic form T. brucei. Furthermore, recombinant GmmSRPN10 was both able to inhibit the activity of human complement-cascade serine proteases, C1s and Factor D, and to protect the in vitro killing of procyclic trypanosomes when incubated with complement-activated human serum. Thus, the secretion of serpins, which may be part of a bloodmeal complement inactivation system in tsetse, is used by procyclic trypanosomes to evade an influx of fresh trypanolytic complement with each bloodmeal. This highlights another facet of the complicated relationship between T. brucei and its tsetse vector, where the parasite takes advantage of tsetse physiology to further its chances of propagation and transmission

    More stories on Th17 cells

    Get PDF
    For more than two decades, immunologists have been using the so-called Th1/Th2 paradigm to explain most of the phenomena related to adaptive immunity. the Th1/Th2 paradigm implied the existence of two different, mutually regulated, CD4(+) T helper subsets: Th1 cells, driving cell-mediated immune responses involved in tissue damage and fighting infection against intracellular parasites; and Th2 cells that mediate IgE production and are particularly involved in eosinophilic inflammation, allergy and clearance of helminthic infections. A third member of the T helper set, IL-17-producing CD4(+) T cells, now called Th17 cells, was recently described as a distinct lineage that does not share developmental pathways with either Th1 or Th2 cells. the Th17 subset has been linked to autoimmune disorders, being able to produce IL-17, IL-17F and IL-21 among other inflammatory cytokines. Interestingly, it has been reported that there is not only a cross-regulation among Th1, Th2 and Th17 effector cells but there is also a dichotomy in the generation of Th17 and T regulatory cells. Therefore, Treg and Th17 effector cells arise in a mutually exclusive fashion, depending on whether they are activated in the presence of TGF-beta or TGF-beta plus inflammatory cytokines such as IL-6. This review will address the discovery of the Th17 cells, and recent progress on their development and regulation.Crohn's and Colitis Foundation of AmericaNIHLa Jolla Inst Allergy & Immunol, La Jolla, CA 92037 USAUniversidade Federal de São Paulo, Dept Microbiol Immunol & Parasitol, São Paulo, BrazilUniversidade Federal de São Paulo, Dept Microbiol Immunol & Parasitol, São Paulo, BrazilNIH: RO1 AI050265-06Web of Scienc

    Genome sequence of the tsetse fly (Glossina morsitans):Vector of African trypanosomiasis

    Get PDF
    Tsetse flies are the sole vectors of human African trypanosomiasis throughout sub-Saharan Africa. Both sexes of adult tsetse feed exclusively on blood and contribute to disease transmission. Notable differences between tsetse and other disease vectors include obligate microbial symbioses, viviparous reproduction, and lactation. Here, we describe the sequence and annotation of the 366-megabase Glossina morsitans morsitans genome. Analysis of the genome and the 12,308 predicted protein-encoding genes led to multiple discoveries, including chromosomal integrations of bacterial (Wolbachia) genome sequences, a family of lactation-specific proteins, reduced complement of host pathogen recognition proteins, and reduced olfaction/chemosensory associated genes. These genome data provide a foundation for research into trypanosomiasis prevention and yield important insights with broad implications for multiple aspects of tsetse biology.IS

    International Lower Limb Collaborative (INTELLECT) study : a multicentre, international retrospective audit of lower extremity open fractures

    Get PDF

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe
    corecore