89 research outputs found

    Statins Reduce Lipopolysaccharide-Induced Cytokine and Inflammatory Mediator Release in an In Vitro Model of Microglial-Like Cells

    Get PDF
    The anti-inflammatory effects of statins (HMG-CoA reductase inhibitors) within the cardiovascular system are well-established; however, their neuroinflammatory potential is unclear. It is currently unknown whether statins’ neurological effects are lipid-dependent or due to pleiotropic mechanisms. Therefore, the assumption that all statin compounds will have the same effect within the central nervous system is potentially inappropriate, with no studies to date having compared all statins in a single model. Thus, the aim of this study was to compare the effects of the six statins (atorvastatin, fluvastatin, pitavastatin, pravastatin, rosuvastatin, and simvastatin) within a single in vitro model of neuroinflammation. To achieve this, PMA-differentiated THP-1 cells were used as surrogate microglial cells, and LPS was used to induce inflammatory conditions. Here, we show that pretreatment with all statins was able to significantly reduce LPS-induced interleukin (IL)-1β and tumour necrosis factor (TNF)-α release, as well as decrease LPS-induced prostaglandin E2 (PGE2). Similarly, global reactive oxygen species (ROS) and nitric oxide (NO) production were decreased following pretreatment with all statins. Based on these findings, it is suggested that more complex cellular models should be considered to further compare individual statin compounds, including translation into in vivo models of acute and/or chronic neuroinflammation

    A Comparative Study to Evaluate the Educational Impact of E-Learning Tools on Griffith University Pharmacy Students’ Level of Understanding Using Bloom’s and SOLO Taxonomies

    Get PDF
    Objectives. To design a series of e-learning tools within the framework of a defined educational pedagogy to complement the conventional pharmacology curriculum at Griffith University and evaluate the impact of this strategy on student level of understanding through taxonomic classification of student final exam answers. Methods. A series of 148 e-learning tools was designed for 3rd year undergraduate pharmacy students and incorporated into their curriculum during 2012. The educational benefits of the e-learning tools were evaluated by analyses of student level of understanding (by SOLO taxonomy) at the final exams between the control group (standard curricula) in 2011 and the intervention group (standard curricula + e-learning tools) in 2012. Results. Backward linear regression analysis demonstrated GPA to be the most significant predictor of level of understanding, while the intervention group was a highly significant predictor for greater level of understanding in semester two. Conclusion. E-learning tools appeared to significantly improve student level of understanding as scored by the SOLO taxonomy when students engaged highly with the tools

    Molecular mechanisms underlying the effects of statins in the central nervous system

    Get PDF
    3-Hydroxy-3-methylglutaryl coenzyme A reductase inhibitors, commonly referred to as statins, are widely used in the treatment of dyslipidaemia, in addition to providing primary and secondary prevention against cardiovascular disease and stroke. Statins’ effects on the central nervous system (CNS), particularly on cognition and neurological disorders such as stroke and multiple sclerosis, have received increasing attention in recent years, both within the scientific community and in the media. Current understanding of statins’ effects is limited by a lack of mechanism-based studies, as well as the assumption that all statins have the same pharmacological effect in the central nervous system. This review aims to provide an updated discussion on the molecular mechanisms contributing to statins’ possible effects on cognitive function, neurodegenerative disease, and various neurological disorders such as stroke, epilepsy, depression and CNS cancers. Additionally, the pharmacokinetic differences between statins and how these may result in statin-specific neurological effects are also discussed

    Ionizing radiation modulates human macrophages towards a pro-inflammatory phenotype preserving their pro-invasive and pro-angiogenic capacities

    Get PDF
    In order to improve the efficacy of conventional radiotherapy, attention has been paid to immune cells, which not only modulate cancer cell response to therapy but are also highly recruited to tumours after irradiation. Particularly, the effect of ionizing radiation on macrophages, using therapeutically relevant doses, is not well understood. To evaluate how radiotherapy affects macrophage behaviour and macrophage-mediated cancer cell activity, human monocyte derived-macrophages were subjected, for a week, to cumulative ionizing radiation doses, as used during cancer treatment (2Gy/fraction/day). Irradiated macrophages remained viable and metabolically active, despite DNA damage. NF-kappaB transcription activation and increased Bcl-xL expression evidenced the promotion of pro-survival activity. A significant increase of pro-inflammatory macrophage markers CD80, CD86 and HLA-DR, but not CCR7, TNF and IL1B was observed after 10Gy cumulative doses, while anti-inflammatory markers CD163, MRC1, VCAN and IL-10 expression decreased, suggesting the modulation towards a more proinflammatory phenotype. Moreover, ionizing radiation induced macrophage morphological alterations and increased their phagocytic rate, without affecting matrix metalloproteases (MMP)2 and MMP9 activity. Importantly, irradiated macrophages promoted cancer cell-invasion and cancer cell-induced angiogenesis. Our work highlights macrophage ability to sustain cancer cell activities as a major concern that needs to be addressed to improve radiotherapy efficacy

    Histone Deacetylase Inhibitors Globally Enhance H3/H4 Tail Acetylation Without Affecting H3 Lysine 56 Acetylation

    Get PDF
    Histone deacetylase inhibitors (HDACi) represent a promising avenue for cancer therapy. We applied mass spectrometry (MS) to determine the impact of clinically relevant HDACi on global levels of histone acetylation. Intact histone profiling revealed that the HDACi SAHA and MS-275 globally increased histone H3 and H4 acetylation in both normal diploid fibroblasts and transformed human cells. Histone H3 lysine 56 acetylation (H3K56ac) recently elicited much interest and controversy due to its potential as a diagnostic and prognostic marker for a broad diversity of cancers. Using quantitative MS, we demonstrate that H3K56ac is much less abundant than previously reported in human cells. Unexpectedly, in contrast to H3/H4 N-terminal tail acetylation, H3K56ac did not increase in response to inhibitors of each class of HDACs. In addition, we demonstrate that antibodies raised against H3K56ac peptides cross-react against H3 N-terminal tail acetylation sites that carry sequence similarity to residues flanking H3K56

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    Get PDF
    In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure fl ux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defi ned as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (inmost higher eukaryotes and some protists such as Dictyostelium ) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the fi eld understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation it is imperative to delete or knock down more than one autophagy-related gene. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways so not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field

    Signalling transduction of O-GlcNAcylation and PI3K/AKT/mTOR-axis in prostate cancer

    No full text
    Hexosamine biosynthetic (HBP) and PI3K/AKT/mTOR pathways are found to predominate the proliferation and survival of prostate cancer cells. Both these pathways have their own specific intermediates to propagate the secondary signals in down-stream cascades and besides having their own structured network, also have shared interconnecting branches. These interconnections are either competitive or co-operative in nature depending on the microenvironmental conditions. Specifically, in prostate cancer HBP and mTOR pathways increases the expression and protein level of androgen receptor in order to support cancer cell proliferation, advancement and metastasis. Pharmacological inhibition of a single pathway is therefore insufficient to stop disease progression as the cancer cells manage to alter the signalling channel. This is one of the primary reasons for the therapeutic failure in prostate cancer and emergence of chemoresistance. Inhibition of these multiple pathways at their common junctures might prove to be of benefit in men suffering from an advanced disease state. Hence, a thorough understanding of these cellular intersecting points and their significance with respect to signal transduction mechanisms might assist in the rational designing of combinations for effective management of prostate cancer.No Full Tex

    Melatonin Alters the Photodegradation of Paracetamol

    No full text

    Trimethoprim-sulfamethoxazole as Pneumocystis jiroveci pneumonia prevention in patients undergoing methotrexate therapy for hematological malignancies: A review of the literature

    No full text
    Methotrexate is a cytotoxic agent that is commonly used to treat autoimmune diseases, and both solid and hematological malignancies. Drug interactions are of particular concern during methotrexate therapy, as they have the potential to alter the pharmacokinetics of methotrexate and lead to significant toxicity. One agent that has the potential to interact with methotrexate is the antimicrobial agent trimethoprim with sulfamethoxazole. Consideration of this interaction is of importance in patients that are undergoing high‐dose methotrexate therapy for hematological malignancies as trimethoprim/sulfamethoxazole is the preferred agent for Pneumocystis jiroveci pneumonia prophylaxis. Current Australian guidelines recommend avoiding concurrent administration of high‐dose methotrexate and trimethoprim/sulfamethoxazole, yet evidence to support this recommendation is unclear. This review investigates the current available evidence that focuses on the interaction between high‐dose methotrexate and trimethoprim/sulfamethoxazole and aims provide guidance for the use of this combination in clinical practice.No Full Tex
    corecore