139 research outputs found

    The Capital Allocation and Agency Problems with Index Funds

    Full text link
    http://deepblue.lib.umich.edu/bitstream/2027.42/169234/1/The Capital Allocation and Corporate Governance Issues With Index Funds.pd

    Real-Time Satellite Component Recognition with YOLO-V5

    Get PDF
    With the increasing risk of collisions with space debris and the growing interest in on-orbit servicing, the ability to autonomously capture non-cooperative, tumbling target objects remains an unresolved challenge. To accomplish this task, characterizing and classifying satellite components is critical to the success of the mission. This paper focuses on using machine vision by a small satellite to perform image classification based on locating and identifying satellite components such as satellite bodies, solar panels or antennas. The classification and component detection approach is based on “You Only Look Once” (YOLO) V5, which uses Neural Networks to identify the satellite components. The training dataset includes images of real and virtual satellites and additional preprocessed images to increase the effectiveness of the algorithm. The weights obtained from the algorithm are then used in a spacecraft motion dynamics and orbital lighting simulator to test classification and detection performance. Each test case entails a different approach path of the chaser satellite to the target satellite, a different attitude motion of the target satellite, and different lighting conditions to mimic that of the Sun. Initial results indicate that once trained, the YOLO V5 approach is able to effectively process an input camera feed to solve satellite classification and component detection problems in real-time within the limitations of flight computers

    Performance Study of YOLOv5 and Faster R-CNN for Autonomous Navigation around Non-Cooperative Targets

    Full text link
    Autonomous navigation and path-planning around non-cooperative space objects is an enabling technology for on-orbit servicing and space debris removal systems. The navigation task includes the determination of target object motion, the identification of target object features suitable for grasping, and the identification of collision hazards and other keep-out zones. Given this knowledge, chaser spacecraft can be guided towards capture locations without damaging the target object or without unduly the operations of a servicing target by covering up solar arrays or communication antennas. One way to autonomously achieve target identification, characterization and feature recognition is by use of artificial intelligence algorithms. This paper discusses how the combination of cameras and machine learning algorithms can achieve the relative navigation task. The performance of two deep learning-based object detection algorithms, Faster Region-based Convolutional Neural Networks (R-CNN) and You Only Look Once (YOLOv5), is tested using experimental data obtained in formation flight simulations in the ORION Lab at Florida Institute of Technology. The simulation scenarios vary the yaw motion of the target object, the chaser approach trajectory, and the lighting conditions in order to test the algorithms in a wide range of realistic and performance limiting situations. The data analyzed include the mean average precision metrics in order to compare the performance of the object detectors. The paper discusses the path to implementing the feature recognition algorithms and towards integrating them into the spacecraft Guidance Navigation and Control system.Comment: 12 pages, 10 figures, 9 tables, IEEE Aerospace Conference 202

    The role of community-based Hubs in reef restoration: Collaborative monitoring at Moore Reef

    Get PDF
    The Cairns-Port Douglas region is home to multiple coral rehabilitation and stewardship projects supported by scientists, Traditional Owners, and a range of local stakeholders. The Cairns-Port Douglas Reef Hub has been a platform for collaboration across Traditional Owners, tourism operators, not-for-profits and scientists from the Reef Restoration and Adaptation Program (AIMS and CSIRO) to design and deliver a project at Moore Reef that assesses how new techniques for assisted coral recovery can be applied in rubble habitats. The collaborative project evaluates the viability of newly engineered coral seeding devices developed by AIMS, for deploying coral recruits that were spawned in the National Sea Simulator in December 2022 to sites at Moore Reef close to tourist pontoons. This project provides important data to inform future scaling up of restoration activities and provides a model for active involvement of a range of partners. Through this work, the project builds understanding around key ingredients for best-practice, place-based engagement opportunities for Reef communities and the general public

    Business Ethics: The Promise of Neuroscience

    Get PDF
    Recent advances in cognitive neuroscience research portend well for furthering understanding of many of the fundamental questions in the field of business ethics, both normative and empirical. This article provides an overview of neuroscience methodology and brain structures, and explores the areas in which neuroscience research has contributed findings of value to business ethics, as well as suggesting areas for future research. Neuroscience research is especially capable of providing insight into individual reactions to ethical issues, while also raising challenging normative questions about the nature of moral responsibility, autonomy, intent, and free will. This article also provides a brief summary of the papers included in this special issue, attesting to the richness of scholarly inquiry linking neuroscience and business ethics. We conclude that neuroscience offers considerable promise to the field of business ethics, but we caution against overpromise

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe
    corecore