
Mahendrakar 1 35th Annual Small Satellite Conference

SSC21-P2-15

Real-time Satellite Component Recognition with YOLO-V5

Trupti Mahendrakar, Ryan T. White, Markus Wilde, Brian Kish

Florida Institute of Technology

150 W University Blvd, Melbourne FL 32901; 917-213-3039

tmahendrakar2020@my.fit.edu

Isaac Silver

Energy Management Aerospace

440 Cinnamon Drive, Satellite Beach, FL 32937; 321-652-2722

isaac@energymanagementaero.com

ABSTRACT

With the increasing risk of collisions with space debris and the growing interest in on-orbit servicing, the ability to

autonomously capture non-cooperative, tumbling target objects remains an unresolved challenge. To accomplish this

task, characterizing and classifying satellite components is critical to the success of the mission. This paper focuses

on using machine vision by a small satellite to perform image classification based on locating and identifying satellite

components such as satellite bodies, solar panels or antennas. The classification and component detection approach is

based on “You Only Look Once” (YOLO) V5, which uses Neural Networks to identify the satellite components. The

training dataset includes images of real and virtual satellites and additional preprocessed images to increase the

effectiveness of the algorithm. The weights obtained from the algorithm are then used in a spacecraft motion dynamics

and orbital lighting simulator to test classification and detection performance. Each test case entails a different

approach path of the chaser satellite to the target satellite, a different attitude motion of the target satellite, and different

lighting conditions to mimic that of the Sun. Initial results indicate that once trained, the YOLO V5 approach is able

to effectively process an input camera feed to solve satellite classification and component detection problems in real-

time within the limitations of flight computers.

INTRODUCTION

The increasing use of small satellites in Low Earth Orbit

(LEO), in particular the deployment of large satellite

constellations, and the associated rapid growth of the

space debris population, make on-orbit servicing (OOS)

and active space debris removal (ADR) an enabling

technology for the sustainable, continued growth of

spaceflight. Real-world OOS and ADR involve large,

non-cooperative target objects that do not feature

navigational aids, are not equipped with dedicated

capture interfaces, and may have significant tumbling

rates, uncertain status of appendage deployment, and

structural damage. Therefore, the autonomous

characterization of non-cooperative target objects,

identification of capture points, planning and execution

of safe approach trajectories, capture of the target object,

and subsequent attitude stabilization are the missing

links on the way to an operational robotic OOS and ADR

infrastructure. Distributed Satellite Systems (DSS),

swarms of collaborative small satellites with each

spacecraft equipped with a relative navigation system, an

agile propulsion system, and an adaptive capture

mechanism can be a highly scalable solution for OOS

and ADR operations with non-cooperative target objects,

as illustrated in Figure 1.

Figure 1: The concept of target object

characterization, trajectory planning, approach and

detumbling by Distributed Satellite Systems

Collaboratively, the swarming satellites will map the

geometry of the target object, characterize its attitude

motion, determine its structural health, identify potential

capture features and collision hazards, plan safe final

approach trajectories to the capture points, and then

collaboratively plan and execute detumbling maneuvers.

The complexity of this chain of operations, in particular

the required capabilities of feature classification and

Mahendrakar 2 35th Annual Small Satellite Conference

recognition, require the use of machine learning

technologies in order to replace the innate capabilities of

humans.

The concepts of OOS and ADR have been on the minds

of space system designers and mission architects since

the dawn of the space age [1]. Ranging from concepts

involving pressurized “dry docks”, over in-situ

maintenance by astronauts, to refueling and repair by

autonomous robots, numerous technologies have been

developed. The Space Shuttle program repeatedly

demonstrated the value of being able to capture a client

spacecraft, return it to Earth for repairs and upgrades

(Palapa-B2 and Westar VI) or to conduct these

operations in orbit (Hubble Space Telescope), and to

assemble and supply large spacecraft (ISS) [2]. Due to

the cost and risk associated with crewed missions, the

focus of OOS research in the 1990s shifted towards

robotic on-orbit servicing. Following the

groundbreaking Japanese mission ETS-VII in 1997 [3],

NASA, DARPA and AFRL demonstrated OOS related

capabilities with DART [4], XSS-10 [5], XSS-11 [6],

ANGELS [7], MiTEx, and Orbital Express [8]. Orbital

Express in 2007 demonstrated a series of end-to-end

servicing activities, including autonomous rendezvous

and capture, inspection, transferring fuel, and swapping

Orbital Replacement Units (ORUs) containing batteries

and flight computers. NASA and DARPA are about to

follow up on Orbital Express by refueling a spacecraft in

Low Earth Orbit during the Restore-L mission [9], and

by servicing a GEO spacecraft on the RSGS (Robotic

Servicing of Geosynchronous Satellites) mission [10].

Both Restore-L and RSGS are slated to be launched in

2022. In 2020 and 2021, Northrop Grumman flew the

Mission Extension Vehicles (MEV) to take over station

keeping of GEO spacecraft [11, 12]. The MEV missions

mark the first-ever instances of commercial OOS.

All past robotic OOS demonstration missions from ETS-

VII through Orbital Express had a highly specialized

robotic servicer conduct repair operations on a purpose-

built, cooperative servicing target smaller than the

servicer. The target spacecraft maintained stable attitude

during capture, featured fiducial markings facilitating

relative navigation, and were equipped with load-bearing

capture interfaces for robotic manipulators. Even the

MEVs, docking with and stabilizing spacecraft not

designed for OOS, are servicing fully functional

spacecraft with stable attitude. Although not equipped

with dedicated docking mechanisms, GEO spacecraft are

equipped with apogee kick motors and prominent

launcher adapter rings on their space deck, which are

ideally suited as structural interfaces for station keeping

purposes. Restore-L and RSGS will demonstrate more

involved servicing operations on non-cooperative

servicing clients.

Overall, the safe approach, inspection, capture and

servicing on a non-cooperative target spacecraft has not

been achieved. After failures of their on-board

computers or attitude control systems, target spacecraft

can have pronounced tumbling motion. Combined with

large antenna apertures or solar arrays, this motion

makes approaching the target for inspection or capture

hazardous. Structural hard points suitable for capture can

be hard to access or can have high rates relative to the

approaching chaser. This can lead to high loads during

capture that can damage both the target and the chaser,

leading to the generation of space debris.

Therefore, in order to make OOS a safe, technologically

mature, and economically viable part of spaceflight,

major advances in the use of autonomy and artificial

intelligence for in-space inspection, characterization of

resident space objects, and intelligent path planning are

required.

The research reported in this paper closes parts of this

capability gap by using the machine learning algorithm

YOLO (You Only Look Once) V5, which is based on

Convolutional Neural Networks (CNNs), to identify and

localize spacecraft bodies, rocket nozzles, antenna

apertures and solar arrays. In the OOS context,

spacecraft bodies and rocket nozzles represent potential

capture locations, whereas antenna apertures and solar

arrays defines keep-out-zones, so that the chaser

spacecraft does not collide with them or inhibit power

generation or communication on the target.

The present paper goes beyond research by Aarestad et

al. using similar algorithms in identifying CubeSats for

space situational awareness and space traffic

management [13], and research by Chen et al. using

region-based convolutional neural network (R-CNN) to

track different features of satellites for docking [14].

The paper first explains the concepts behind CNNs and

the unique properties of the YOLO V5 algorithm in

application to aerospace engineering. The paper

proceeds to discuss the image database used to train the

algorithm and describes the experiments used in the

performance evaluation of the algorithm. The

experiments were conducted in the Florida Tech Orbital

Robotics Interaction, On-orbit servicing, and Navigation

(ORION) laboratory, a facility developed to generate

high-fidelity representations of spacecraft relative

motion and orbital lighting conditions. The paper then

discusses the results of the tests and the limitations and

growth potential of the algorithms used.

Mahendrakar 3 35th Annual Small Satellite Conference

DEEP LEARNING FOR COMPUTER VISION:

FROM IMAGE CLASSIFICATION TO OBJECT

DETECTION WITH YOLO V5

Deep learning approaches to computer vision have

achieved ever-more-impressive successes over the past

two decades. Initially, progress was restricted to

relatively straightforward image classification tasks. For

example, CNNs of LeCun [15] accurately classified

small (28-by-28), centered, grayscale images of the 10

handwritten digits by an approach inspired by the

neurophysiological studies of the visual cortex of cats by

Hubel and Wiesel [16, 17] and the neocognitron of

Fukushima [18], and exploited the efficient

backpropagation algorithm of Rumelhart, et. al. [19].

Later, tremendous progress was achieved in image

classification, peaking with the ImageNet Large Scale

Visual Recognition Competition (ILSVRC) [20, 21],

which was a yearly competition 2010-2017 that, among

other tasks, challenged state-of-the-art image

classification models to classify a dataset of 1.2m color

images averaging 482-by-418 pixels from 1000 distinct

classes. The ILSVRCs gave researchers an opportunity

to showcase new developments in deep learning models.

The competition ushered in GPU-enhanced CNNs with

AlexNet [22], novel architectures such as VGGNet [23]

and Inception [24], and new innovations such as

advanced optimization techniques [25, 26],

initializations, data augmentation (see a survey from

[27]), and the models began to be trained quickly enough

to permit the use of ensemble learning [28]. By 2015, the

ResNet model [29] surpassed human capabilities at the

ILSVRC classification task.

With the ImageNet classification problem essentially

solved, the ILSVRC and, with it, much of the computer

vision community moved on to more challenging tasks

than image classification, such as object localization,

where the goal is to find the location of the most

prominent object in an image and draw a bounding box

around it. The object localization problem is, therefore,

a regression problem where an image is input to the

algorithm, and it predicts five numbers:

(𝑜, 𝑥, 𝑦, 𝑤, ℎ) (1)

This includes four numbers specifying the bounding box:

the coordinates of its center (𝑥, 𝑦), its width 𝑤, and its

height ℎ, as we see in the Figure 2.

The remaining number is an “objectness” score 𝑜, which

is an estimated probability that the predicted bounding

box has an object in it. Object localization algorithms

attempt to minimize a loss function, typically the sum of

squared errors for bounding box locations and

dimensions with high objectness score.

A combination of the image classification and object

localization tasks is object detection, where the goal is

not only to localize an object in the image but to

simultaneously classify multiple objects from multiple

object classes and localize each one. This paper focuses

on solving the object detection problem for objects

including spacecraft bodies, thrusters, antennas, and

solar arrays applied to individual image frames from a

camera feed under heavy computational restrictions.

Each image in the dataset used in the project contains

zero or more objects that have been manually labeled and

localized (see the next section for more details on the

dataset).

Figure 2: A bounding box for a satellite body

As such, object detectors are regression models that

estimate not only the location of multiple bounding

boxes and objectness scores but also an estimated

probability mass function 𝒑 = (𝑝1 , 𝑝2, … , 𝑝𝑘), where 𝑝𝑖

is the conditional probability the bounding box contains

an object from class 𝑖 given that it contains an object and

𝑘 is the number of classes. Altogether, a successful

object detector will produce a (5+k)-dimensional point

of the form

(𝑜, 𝑥, 𝑦, 𝑤, ℎ, 𝒑) (2)

and produce such a point for each object in the image.

For example, if an image from our dataset contains one

solar array and one antenna, an object detector will

predict 18 numbers across two 9-dimensional points. For

the solar array, the object detector will ideally produce

the values

(1, 𝑥1, 𝑦1, 𝑤1, ℎ1, 1,0,0,0) (3)

where (𝑥1, 𝑦1, 𝑤1, ℎ1) corresponds to a bounding box

that tightly surrounds the solar array, the first 1 means

the model predicts there is an object in the bounding box,

Mahendrakar 4 35th Annual Small Satellite Conference

and the (1,0,0,0) implies the object is a solar array with

probability 1 and another class with probability 0.

Similarly, the point for the antenna should have

probabilities (0,0,1,0) with an appropriate bounding

box.

How do object detectors find the bounding boxes?

Classical (non-neural) object detectors, such as

Histogram of Oriented Gradients (HOG) [30], used a

“sliding window” approach estimated probability mass

functions of the content of overlapping windows sliding

left-to-right and top-to-bottom (like one would read in

English) over the image, scanning the whole image and

classifying each window. These models used non-neural

classifiers like support vector machines (SVMs) since

the computational cost of this method for traditional

neural networks was prohibitively high. The first

especially effective neural object detector, OverFeat

[31], used a CNN with GPU-acceleration to speed up the

sliding windows approach enough to be practical, but

another issue emerged: pre-determining the window size

did not produce very precise bounding boxes.

From here, multiple popular object detectors emerged.

Notably, region-based CNNs (R-CNNs) by Girshick et.

al. [32] are based on the idea to segment the image into

small chunks, use a selective search algorithm to

combine similar regions into larger ones, and propose

many candidate region to be fed into a CNN—a few

thousand proposals are typical—which extract feature

vectors from the regions, which are then fed into an SVM

for objectness predictions and a regression algorithm for

adjusting the bounding box dimensions for precision

before classification. R-CNN’s accuracy is much better

than its predecessors, but the computation speed of

testing is very slow given the cost of selective search and

for feeding a large number of regions into the CNN,

making it a poor candidate for real-time object detection,

even for non-spacecraft hardware. Fast R-CNN [33]

feeds the entire image into the CNN, generating a feature

map, from which region proposals are identified and

selected by a region of interest (RoI) pooling layer and

then fed into a fully connected neural network for both

classification and bounding box regression. It also

initializes the network with a classifier pre-trained to

classify the ImageNet dataset, which speeds up training.

Faster R-CNN [34] goes further and replaces selective

search with a separate region proposal network (RPN) to

predict the region proposals. In the same family is Mask

R-CNN [35], which detects objects and further identifies

the pixels corresponding to the object within the

bounding box—performing an image segmentation

task—at an additional computational cost, and region-

based fully convolutional network (R-FCN) [36], which

replaces the fully connected layers after the RoI pooling

with faster CNNs. These newer variants are fast enough

to perform real-time object detection with conventional

hardware in many use-cases, but spacecraft onboard

computing resources are not sufficient to achieve

accurate object detection at a useful framerate with these

methods.

The R-CNN family of object detectors are multi-stage

models that propose regions with selective search or an

RPN, apply the classification model on each region, and

then perform post-processing to refine the bounding

boxes and eliminate duplicated detections. Single-stage

models, such as Single Shot Detectors (SSDs) [37] and

the You Only Look Once (YOLO) [38] family of

models, attempt to localize and classify objects both with

a single neural network, going directly from image pixels

to predicted objectness scores, bounding boxes, and class

probabilities at once. SSDs achieve slightly less

accuracy than Faster R-CNN but run a little faster.

YOLO, on the other hand, can run much faster than the

others. The original YOLO algorithm ran at 45 frames

per second on a previous-generation GPU. Accuracy

suffers somewhat with YOLO in exchange for the speed,

but it is accurate enough for many use-cases.

Importantly, YOLO can run at a lesser but still effective

framerate using constrained computational resources

suitable for onboard object detection.

How does YOLO detect objects in just one stage so

quickly? It partitions the input image into multiple grids

of non-overlapping windows, predicts multiple

bounding boxes centered in each grid rectangle along

with class probabilities in each grid, and predicts class

probabilities for objects in each window with bounding

box probabilities weighted by objectness scores. It may

sound expensive to do this for each window, but YOLO

uses the convolutional method originating in OverFeat to

make these predictions quickly.

The grid approach to finding bounding boxes typically

results in many overlapping bounding boxes that contain

the same object. To deal with this, YOLO removes all

such bounding boxes with low objectness scores and

then uses a method called non-max suppression to

choose the best box. Non-max suppression chooses the

remaining bounding box with the highest objectness

score and compares it to each other remaining bounding

box. In this comparison, the area of the intersection of

the boxes is divided by the area of their union (IoU)—if

IoU is near 1, the box is deemed too similar to the high-

objectness box and is removed. This is an incredibly

computationally cheap way to exclude lower-quality or

redundant bounding boxes.

Like Fast R-CNN and Faster R-CNN, YOLO uses a

CNN pretrained for classifying the ImageNet dataset.

But, unlike these models, YOLO converts the underlying

Mahendrakar 5 35th Annual Small Satellite Conference

20-layer DarkNet CNN (the “backbone” of the model) to

perform object detection in its entirety. It first adds four

convolutional layers and two fully connected layers (the

“neck” of the model) with randomly initialized weights

to improve classification accuracy, and then adds a final

layer (the “head” of the model) to predict both class

probabilities and bounding boxes simultaneously. This

segmentation of the CNN into a pretrained backbone, a

neck to train to the dataset at hand, and the head to make

the final prediction of bounding boxes and class

probabilities has been an influential idea that has

continued through the YOLO family and other models.

YOLO9000 (YOLO V2) [39] makes some incremental

improvements like adding batch normalization to the

convolutional layers, using a higher resolution classifier,

and fine-tuning the pretrained net to improve accuracy,

as well as using finer grid to help with detecting small

objects, removing fully connected layers to improve

speed, and randomizing training image size to avoid a

bias YOLO had toward the scale of training data. But,

most notably, YOLO V2 introduced anchor boxes,

which allow the net to pre-specify typical sizes, aspect

ratios, and/or locations for each class. YOLO V2 selects

these using K-means clustering on the training datas’

bounding boxes for each class, resulting in significantly

higher accuracy at higher framerates.

YOLO V3 [40] is, as its tech report states, an incremental

improvement. It predicts objectness scores with logistic

regression, replaces the final softmax layer in the

classifier with independent logistic regression classifiers

and replaces sum of squared error loss with binary cross-

entropy to improve in cases where there are overlapping

labels for the same object (e.g. thruster and nozzle),

makes multiple predictions at each grid cell, and

implements a CNN similar to YOLO V2 but deeper (i.e.

with more layers) and with shortcut connections

pioneered in ResNets [29], which improve accuracy

without much cost to speed. More interestingly, the

authors further use an idea from Feature Pyramid

Networks (FPNs) [41] that make bounding box and class

probability predictions at three different scales and use

them all to inform the object detection, which helps with

predictions across scales.

YOLO V4 [42], written by a different author than

previous versions, makes some more incremental

improvements, primarily adjusting how the CNN learns

by performing wide-ranging hyperparameter tuning

experiments involving the activations, loss functions,

CNN architectures, data augmentation, regularization,

normalization, and optimization algorithms. This results

in small improvements across the board to training time,

accuracy, and framerate.

YOLO V5 [43] has been somewhat controversial, as the

original author is no longer involved, and a third

developer released a PyTorch implementation of a

YOLO model named YOLO V5 with claims of

superiority that are disputed by the second author.

Controversy aside, performance of YOLO V4 and

YOLO V5 seem very similar, but PyTorch is somewhat

more convenient, so it is used in the remainder of the

paper.

TRAINING DATA SET

To accomplish the goals of the research, an image dataset

consisting of a total of 523 images of solar arrays,

satellite bodies, antennas and thruster nozzles was

developed. The images in the database come from the

internet, from satellite models used in Kerbal Space

Program, and from geometric models used in AGI

Systems Tool Kit (STK). The images were chosen based

on these criteria: (1) the object should be identifiable and

each class should be distinguishable from one another to

prevent any errors in labeling the data; (2) the shapes of

the components in the images should resemble real life

components; (3) no image should be used twice

The dataset was then annotated by drawing bounding

boxes around each object within each image with

Roboflow [44]. Roboflow is a computer vision image

annotating tool capable of automatically exporting

annotated images in a convenient format. Figure 3 shows

an illustration for the annotations.

Figure 3: Classes and Annotations

The overall dataset was then split into a training set with

366 images, a validation set with 104 images and a

testing set with 53 images. The number of annotations in

each set is summarized in Figure 3.

TESTING DATA DEVELOPMENT

The testing video dataset was acquired using the Florida

Tech ORION Lab [45]. The ORION Lab’s planar,

cartesian Maneuver Kinematics Simulator shown in

Figure 4 has a workspace of 5.5 m × 3.5 m. The primary

component of the kinematics simulator is a horizontal

Mahendrakar 6 35th Annual Small Satellite Conference

2 DOF motion table capable of positioning a payload of

80 kg at a maximum speed of 0.25 m/s and a maximum

acceleration of 1 m/s2 along both linear axes. The motion

table is designed to carry a wide range of equipment,

such as small industrial manipulators or pan-tilt

mechanisms. The ORION pan-tilt mechanisms are

custom designed to carry a test article with mass 20 kg

and dimensions 0.5 m × 0.5 m × 0.5 m. The motion

envelope is ±90° in elevation and infinite rotation in

azimuth, with maximum rotation rate 60°/s and

maximum acceleration 60°/s2 about each axis. The test

article is supplied with power and Ethernet connections

via a slip ring around the azimuth axis. The Maneuver

Kinematics Simulator currently employs two pan-tilt

mechanisms. The stationary pan-tilt head is used to

generate the attitude motion of a target spacecraft model.

The target model has geometrical and surface features

typically found on a satellite, such as parabolic antenna,

thruster nozzles, solar arrays, etc. The moving pan-tilt

head is designed to carry a spacecraft robotics test

vehicle equipped with a number of robotic manipulators,

a capture tool, multiple cameras and distance sensors.

As shown in Figure 5, the ORION simulator uses

commercial-off-the-shelf components to generate a light

source sufficiently bright to exceed the dynamic range of

common optical sensors while providing a narrow beam

angle. The walls, floor, and ceiling of the testbed are

painted a low-reflectivity black and all windows are

covered with black-out blinds to fully control the lighting

conditions. The selected light source is a Litepanels Hilio

D12 LED panel. The panel generates light with a color

temperature of 5,600 K (daylight balanced) with 350 W

of power. The intensity is equivalent to a 2,000 W

incandescent lamp. The intensity can be continuously

dimmed from 100% to 0%, and the beam angle can be

varied between 10° and 60° using lens inserts. Therefore,

the light can be used to simulate solar illumination and

also the weaker and diffuse Earth albedo. The LED panel

is mounted on a wheeled tripod for quick positioning

anywhere within the lab space.

For testing data, sixteen test videos of the target object

mock-up were shot by the chaser spacecraft approaching

the target to evaluate the performance of the algorithm.

Out of the sixteen, videos 1 through 4 included the target

vehicle either being stationary or yawing or both yawing

and pitching, while the chaser was approaching with a

constant velocity in either x, y or both x and y directions.

The last 12 videos were shot by turning off the overhead

lights and using the LED light panel from Figure 5 while

the chaser followed the same constraints used in the first

4 videos.

Some images from the videos along with constraints

used are summarized in Figure 6 - Figure 9. The motion

and lighting conditions in those test cases were selected

to closely resemble real-life rendezvous missions.

TRAINING AND TEST Results

Training

As expected, the most realistic videos were the last 12

cases, with the light source in-plane with chaser and

target. Only test case 3 was analyzed for this paper due

to its high complexity in comparison with the other

videos.

The default Ultralytics YOLO V5 network [43] along

with several pre-processing image augmentation

techniques listed below were used to obtain results

mentioned in the paper.

The following augmentation was applied to create 3

versions of each source image:

Figure 4: ORION Spacecraft Maneuver Kinematics

Simulator

Figure 5: Chaser Spacecraft and LED Light Panel

2 DOF Motion Table

2 DOF Pan-

Tilt Head

with Target

Object

2 DOF

Pan-Tilt

Head

with

Chaser

Spacecraft

x

y
z

yaw

pitch

roll

Mahendrakar 7 35th Annual Small Satellite Conference

1. Randomly crop between 0 and 34 percent of the

image

2. Random rotation of between -28 and +28 degrees

3. Random brightness adjustment of between -49 and

+49 percent

4. Random Gaussian blur of between 0 and 10 pixels

5. Salt and pepper noise (dark spots in white regions

and white spots in dark regions) was applied to 13

percent of pixels.

These augmentation techniques were chosen based on

how the images in the dataset could closely resemble

spacecraft in outer atmosphere. With these augmentation

techniques, the algorithm achieved the highest average

true positive values of 75% for the body, 64% for the

solar array, 54% for the antenna and 15% for thrusters.

The code currently classifies in real-time at the speed of

140 frames per second (FPS) using a Tesla P100 GPU

via Google Colab. Figure 10, Figure 11 and Figure 12

contain results of the object detection algorithm and

other metrics essential for measuring performance.

In Figure 10, rows of the confusion matrix correspond to

the predicted values and columns correspond to the

actual values. Ideally, all objects would be classified

properly, meaning the diagonal should include all

classifications in its row and column, which was

approximately true for all classes except thrusters so far.

The bottom row represents false negatives (FN)

corresponding objects that were in the frame but failed

to be detected by the algorithm, where we noticed some

significant problems with thrusters, lesser mistakes with

antennas, but broad success with bodies and solar arrays.

The rightmost column represents false positives (FP)

where the algorithm detected an object where there was

none. Here, most mistakes were again associated with

thrusters.

Thrusters and antennas currently perform poorly

partially because thrusters come in many different

shapes and patterns. A classical bell nozzle-shaped

thruster, an ion thruster, and a hole in the satellite body

Light source: Overhead
Target yaw | pitch | roll rates: 10 | 0 | 0 deg/s
Chaser x | y | z velocity: 10 | 0 | 0 cm/s

Figure 6: Test Case 1

Light source: Overhead
Target yaw | pitch | roll rates: 20 | 10 | 0 deg/s
Chaser x | y | z velocity: 10 | 10 | 0 cm/s

Figure 7: Test Case 2

Light source: In plane, at 135° yaw
Target yaw | pitch | roll rates: 10 | 0 | 0 deg/s
Chaser x | y | z velocity: 10 | 10 | 0 cm/s

Figure 8: Test Case 3

Light source: In plane, at 150° yaw
Target yaw | pitch | roll rates: 10 | 0 | 0 deg/s
Chaser x | y | z velocity: 10 | 10 | 0 cm/s

Figure 9: Test Case 4

Mahendrakar 8 35th Annual Small Satellite Conference

were classified as thrusters. Similarly, antennas have

different shapes such as a parabolic, helical, and horn

antennas. This lack of segregation in the dataset has led

to fewer than the actual number of annotations for these

classes causing error in the algorithm.

The plots in Figure 11 demonstrates the trend in the

precision, recall and mAP values. Higher the precision,

recall and mAP, better the algorithm works.

Precision is the ratio of true positive (TP) values to the

sum of true positive and false positive (FP) values.

Whereas recall is the ratio of true positive and false

negative values.

mAP as defined in equation 4 is the mean average

precision over all the classes in the dataset. mAP@0.5 is

the mean average precision across all classes at IoU

Figure 10: Confusion Matrix

Figure 11: Training Metrics

Mahendrakar 9 35th Annual Small Satellite Conference

threshold 0.5. mAP@0.5:0.95 is the average mAP over

different IoU thresholds equally spaced from 0.5 to 0.95.

𝑚𝐴𝑃 =
1

|𝑐𝑙𝑎𝑠𝑠𝑒𝑠|
Σ𝑐𝜖𝑐𝑙𝑎𝑠𝑠𝑒𝑠#

𝑇𝑃(𝑐)

#𝑇𝑃(𝑐) + #𝐹𝑃(𝑐)
 (4)

Figure 12 shows the precision-recall curve for each class.

As seen here as well, the precision value drops with

increasing recall values for thrusters while, antennas

perform almost around the average curve for all classes

and, solar panels and body stay above the average curve.

The plots indicate the model is undertrained. The results

can be improved due to the lack of curves plateauing

before or at 100 epochs by simply training the model

longer.

Testing

To continue evaluating the algorithm, case 3 video from

Figure 8 was tested with the weights generated from the

training algorithm. Figure 13 shows a frame from the

video before and after using YOLO V5 inference.

Table 1: Error Analysis Summary of Case 3 Test

Video

Average

Accuracy
Actual

YOLO

Detections
FN FP

Thrusters 1.10% 16 1 0 0

Antennas 52% 19 35 8 10

Body 52% 37 28 9 1

Solar

Panels
62.90% 42 32 9 2

Though the video is inferred at 140 FPS, the inferred

video was analyzed every second for 37 seconds for

simplicity to get an estimate of the performance of the

algorithm. Table 1 below contains a summary of the

error analysis of case 3 test video.

Figure 13: Before and After YOLO V5

The term “actual” in Table 1 corresponds to the feature

visibility in the video at that second, “YOLO detections”

state how many times the algorithm detected a feature,

FN and FP correspond to the correctness of the YOLO

detection.

Antennas have the highest FP values. It was seen that the

algorithm frequently detected the chaser’s stand and the

Figure 12: Multi-Class P-R Curve

Mahendrakar 10 35th Annual Small Satellite Conference

rails of the test bed as antenna because of its low gain

antenna like shape and, an emergency light of the

ORION lab in the background because of its parabolic

shape. Figure 14 shows a collage of frames of the

observation.

All three classes – antennas, body and solar panels

showed a high false negative value which is problematic.

However, case 3 has the worst lighting conditions out of

all the videos that were shot at the ORION lab.

Additionally, the training dataset chosen does not

resemble the testing dataset accurately since the training

dataset images are well lit and relatively easier to

identify leading to a spike in the FN.

Finally, the worst performing class is thrusters as

discussed earlier.

Some ways to improve accuracy would be to apply more

augmentation techniques, generate images of satellites in

black background using CAD software Blender as

discussed in [13], and segregate the thruster and antenna

dataset into multiple other classes based on shape and

pattern.

Figure 14: Test Observation - Antenna and Solar

Panels

CONCLUSION

Based on initial testing of YOLO V5 on the satellite

dataset developed by the ORION lab, test video

observation, analysis and results discussed in this paper,

real-time detection of different components of satellite is

feasible. Since the algorithm is not completely reliable at

the moment, ongoing and future research focuses on

incorporating additional pre-processing and

augmentation techniques, ensemble methods and

regression techniques for the bounding boxes to increase

the detection accuracy and reliability of the algorithm.

ACKNOWLEDGMENT

We thank Florida Institute of Technology undergraduate

students –Nathan Fischer, Andrew Ekbald and

Nouraldean El-Chariti for assisting with data

accumulation.

REFERENCES

1. M. H. Skeer, "Potential Satellite Servicing

Operations and the Impact of Servicing on

Satellite Design," Bellcomm, Inc., Washington,

DC, 1969.

2. J. L. Goodman, "History of Space Shuttle

Rendezvous and Proximity Operations," Journal

of Spacecraft and Rockets, vol. 43, no. 5, pp. 944-

959, 2006.

3. K. Yoshida, "Engineering Test Satellite VII Flight

Experiments For Space Robot Dynamics and

Control: Theories on Laboratory Test Beds Ten

Years Ago, Now in Orbit," The International

Journal of Robotics Research, vol. 22, no. 5, pp.

321-335, 2003.

4. R. T. Howard and T. C. Bryan, "DART AVGS

flight results," Proceedings of SPIE, vol. 6555, no.

Sensors and Systems for Space Applications, pp.

1-10, 2007.

5. T. M. Davis and D. Melanson, "XSS-10 Micro-

Satellite Flight Demonstration Program Results,"

Proc. of SPIE, vol. 5419, no. Spacecraft Platforms

and Infrastructure, pp. 16-25, 2004.

6. AFRL, "XSS-11 Micro Satellite," September

2011. [Online]. Available:

https://www.kirtland.af.mil/Portals/52/documents

/AFD-111103-035.pdf?ver=2016-06-28-110256-

797. [Accessed 17 July 2020].

7. AFRL, "Automated Navigation and Guidance

Experiment for Local Space (ANGELS)," July

2014. [Online]. Available:

https://www.kirtland.af.mil/Portals/52/documents

/AFD-131204-039.pdf?ver=2016-06-28-105617-

297. [Accessed 17 July 2020].

8. F. G. Kennedy III, "Orbital Express:

Accomplishments and Lessons Learned,"

Advances in the Astronautical Sciences, vol. 131,

no. Guidance and Control 2008, pp. 575-586,

2008.

Mahendrakar 11 35th Annual Small Satellite Conference

9. B. J. Reed, R. C. Smith, B. Naasz, J. Pellegrino

and C. Bacon, "The Restore-L Servicing Mission,"

in AIAA SPACE Forum, Long Beach, CA, 2016.

10. G. Roesler, P. Jaffe and G. Henshaw, "Orbital

Mechanics," IEEE Spectrum Magazine, pp. 45-50,

March 2017.

11. C. Gebhardt, "Northrop Grumman makes history,

Mission Extension Vehicle docks to target

satellite," NASASpaceflight.com, 26 February

2020. [Online]. Available:

https://www.nasaspaceflight.com/2020/02/northr

op-grumman-history-mission-extension-vehicle-

docks-satellite/. [Accessed 25 May 2021].

12. C. Gebhardt, "Mission Extension Vehicles

succeed as Northrop Grumman works on future

servicing/debris clean-up craft,"

NASASpaceflight.com, 7 May 2021. [Online].

Available:

https://www.nasaspaceflight.com/2021/05/mev-

success-ng-future-servicing/. [Accessed 25 May

2021].

13. J. Aarestad, A. Cochrane, M. Hannon, E. Kain, C.

Kief, S. Lindsley and B. Zufelt, "Challenges and

Opportunities for CubeSat Detection for Space

Situational Awareness using a CNN," in 34th

Annual Small Satellite Conference, Logan, UT,

2020.

14. Y. Chen, J. Gao and K. Zhang, "R-CNN-Based

Satellite Components Detection in Optical

Images," International Journal of Aerospace

Engineering, vol. 2020, no. 8816187, p. 10, 2020.

15. Y. Lecun, L. Bottou, Y. Bengio and P. Haffner,

"Gradient-based learning applied to document

recognition," Proceedings of the IEEE, vol. 86, p.

2278–2324, 1998.

16. D. H. Hubel and T. N. Wiesel, "Receptive fields

of single neurones in the cat\textquotesingles

striate cortex," The Journal of Physiology, vol.

148, p. 574–591, 10 1959.

17. D. H. Hubel and T. N. Wiesel, "Receptive fields,

binocular interaction and functional architecture in

the cat's visual cortex," The Journal of Physiology,

vol. 160, p. 106–154, 1 1962.

18. K. Fukushima, "Neocognitron: A self-organizing

neural network model for a mechanism of pattern

recognition unaffected by shift in position,"

Biological Cybernetics, vol. 36, p. 193–202, 4

1980.

19. D. E. Rumelhart, G. E. Hinton and R. J. Williams,

"Learning representations by back-propagating

errors," Nature, vol. 323, p. 533–536, 1986.

20. J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li and

L. Fei-Fei, "ImageNet: A large-scale hierarchical

image database," in 2009 IEEE Conference on

Computer Vision and Pattern Recognition, 2009.

21. O. Russakovsky, J. Deng, H. Su, J. Krause, S.

Satheesh, S. Ma, Z. Huang, A. Karpathy, A.

Khosla, M. Bernstein, A. C. Berg and L. Fei-Fei,

"ImageNet Large Scale Visual Recognition

Challenge," International Journal of Computer

Vision, vol. 115, p. 211–252, 2015.

22. A. Krizhevsky, I. Sutskever and G. Hinton,

"ImageNet classification with deep convolutional

neural networks," in Proceedings of the 25th

International Conference on Neural Information

Processing Systems - Volume 1 (NIPS'12), 2012.

23. K. Simonyan and A. Zisserman, "Very Deep

Convolutional Networks for Large-Scale Image

Recognition," in ICLR 2015 : International

Conference on Learning Representations 2015,

2015.

24. C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens and

Z. Wojna, "Rethinking the Inception Architecture

for Computer Vision," in 2016 IEEE Conference

on Computer Vision and Pattern Recognition

(CVPR), 2016.

25. D. P. Kingma and J. Ba, "Adam: A method for

stochastic optimization," arXiv preprint,

arXiv:1412.69, 2014.

26. N. Srivastava, G. Hinton, A. Krizhevsky, I.

Sutskever and R. Salakhutdinov, "Dropout: a

simple way to prevent neural networks from

overfitting. The journal of machine learning

research," The Journal of Machine Learning

Research, vol. 15, p. 1929–1958, 2014.

27. C. Shorten and T. M. Khoshgoftaar, "A survey on

image data augmentation for deep learning,"

Journal of Big Data, vol. 6, 2019.

28. T. G. Dietterich, "Ensemble Methods in Machine

Learning," in Proceedings of the First

International Workshop on Multiple Classifier

Systems, Berlin, 2000.

29. K. He, X. Zhang, S. Ren and J. Sun, "Identity

mappings in deep residual networks," in Computer

Vision – ECCV 2016, Springer International

Publishing, 2016, p. 630–645.

30. N. Dalal and B. Triggs, "Histograms of Oriented

Gradients for Human Detection," in 2005 IEEE

Computer Society Conference on Computer Vision

and Pattern Recognition

(CVPR\textquotesingle05).

31. P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R.

Fergus and Y. LeCun, "OverFeat: Integrated

Recognition, Localization and Detection using

Convolutional Networks," in 2nd International

Conference on Learning Representations, ICLR

Mahendrakar 12 35th Annual Small Satellite Conference

2014, Banff, AB, Canada, April 14-16, 2014,

Conference Track Proceedings, 2014.

32. R. Girshick, J. Donahue, T. Darrell and J. Malik,

"Rich Feature Hierarchies for Accurate Object

Detection and Semantic Segmentation," in 2014

IEEE Conference on Computer Vision and Pattern

Recognition, 2014.

33. R. Girshick, "Fast R-CNN," in 2015 IEEE

International Conference on Computer Vision

(ICCV), 2015.

34. S. Ren, K. He, R. Girshick and J. Sun, "Faster R-

CNN: Towards Real-Time Object Detection with

Region Proposal Networks," in Advances in

Neural Information Processing Systems, 2015.

35. K. He, G. Gkioxari, P. Dollar and R. Girshick,

"Mask R-CNN," in 2017 IEEE International

Conference on Computer Vision (ICCV), 2017.

36. J. Dai, Y. Li, K. He and J. Sun, "R-FCN: Object

Detection via Region-Based Fully Convolutional

Networks," in Proceedings of the 30th

International Conference on Neural Information

Processing Systems, Red Hook, NY, USA, 2016.

37. W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S.

Reed, C.-Y. Fu and A. C. Berg, "SSD: Single Shot

MultiBox Detector," in Computer Vision – ECCV

2016, Springer International Publishing, 2016, p.

21–37.

38. J. Redmon, S. Divvala, R. Girshick and A.

Farhadi, "You Only Look Once: Unified, Real-

Time Object Detection," in IEEE Conference, Las

Vegas, 2016.

39. J. Redmon and A. Farhadi, "YOLO9000: Better,

Faster, Stronger," in Proceedings of the IEEE

Conference on Computer Vision and Pattern

Recognition (CVPR), 2017.

40. J. Redmon and A. Farhadi, "YOLOv3: An

Incremental Improvement," 8 4 2018.

41. T.-Y. Lin, P. Dollar, R. Girshick, K. He, B.

Hariharan and S. Belongie, "Feature Pyramid

Networks for Object Detection," in 2017 IEEE

Conference on Computer Vision and Pattern

Recognition (CVPR), 2017.

42. A. Bochkovskiy, C.-Y. Wang and H.-Y. M. Liao,

"YOLOv4: Optimal Speed and Accuracy of

Object Detection," 23 4 2020.

43. G. Jocher, A. Stoken, J. Borovec, A. Chaurasia, L.

Changyu, V. Abhiram, A. Hogan, A. Wang, J.

Hajek, L. Diaconu, Y. Kwon, Y. Defretin, A.

Lohia, B. Milanko, B. Fineran, D. Khromov, D.

Yiwei and F. Ingham, ultralytics/yolov5: v5.0 -

YOLOv5-P6 1280 models, AWS, Supervise.ly and

YouTube integrations, Zenodo, 2021.

44. "Roboflow," 13 May 2021. [Online]. Available:

https://roboflow.com/.

45. M. Wilde, B. Kaplinger, T. Go, H. Gutierrez and

D. Kirk, "ORION: A Simulation Environment for

Spacecraft Formation Flight, Capture, and Orbital

Robotics," in Proceedings of the 2016 IEEE

Aerospace Conference, Big Sky, MT, 2016.

