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ABSTRACT 

With the increasing risk of collisions with space debris and the growing interest in on-orbit servicing, the ability to 

autonomously capture non-cooperative, tumbling target objects remains an unresolved challenge. To accomplish this 

task, characterizing and classifying satellite components is critical to the success of the mission. This paper focuses 

on using machine vision by a small satellite to perform image classification based on locating and identifying satellite 

components such as satellite bodies, solar panels or antennas. The classification and component detection approach is 

based on “You Only Look Once” (YOLO) V5, which uses Neural Networks to identify the satellite components. The 

training dataset includes images of real and virtual satellites and additional preprocessed images to increase the 

effectiveness of the algorithm. The weights obtained from the algorithm are then used in a spacecraft motion dynamics 

and orbital lighting simulator to test classification and detection performance. Each test case entails a different 

approach path of the chaser satellite to the target satellite, a different attitude motion of the target satellite, and different 

lighting conditions to mimic that of the Sun. Initial results indicate that once trained, the YOLO V5 approach is able 

to effectively process an input camera feed to solve satellite classification and component detection problems in real-

time within the limitations of flight computers. 

INTRODUCTION  

The increasing use of small satellites in Low Earth Orbit 

(LEO), in particular the deployment of large satellite 

constellations, and the associated rapid growth of the 

space debris population, make on-orbit servicing (OOS) 

and active space debris removal (ADR) an enabling 

technology for the sustainable, continued growth of 

spaceflight. Real-world OOS and ADR involve large, 

non-cooperative target objects that do not feature 

navigational aids, are not equipped with dedicated 

capture interfaces, and may have significant tumbling 

rates, uncertain status of appendage deployment, and 

structural damage. Therefore, the autonomous 

characterization of non-cooperative target objects, 

identification of capture points, planning and execution 

of safe approach trajectories, capture of the target object, 

and subsequent attitude stabilization are the missing 

links on the way to an operational robotic OOS and ADR 

infrastructure. Distributed Satellite Systems (DSS), 

swarms of collaborative small satellites with each 

spacecraft equipped with a relative navigation system, an 

agile propulsion system, and an adaptive capture 

mechanism can be a highly scalable solution for OOS 

and ADR operations with non-cooperative target objects, 

as illustrated in Figure 1.  

 

Figure 1: The concept of target object 

characterization, trajectory planning, approach and 

detumbling by Distributed Satellite Systems 

Collaboratively, the swarming satellites will map the 

geometry of the target object, characterize its attitude 

motion, determine its structural health, identify potential 

capture features and collision hazards, plan safe final 

approach trajectories to the capture points, and then 

collaboratively plan and execute detumbling maneuvers. 

The complexity of this chain of operations, in particular 

the required capabilities of feature classification and 
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recognition, require the use of machine learning 

technologies in order to replace the innate capabilities of 

humans. 

The concepts of OOS and ADR have been on the minds 

of space system designers and mission architects since 

the dawn of the space age [1]. Ranging from concepts 

involving pressurized “dry docks”, over in-situ 

maintenance by astronauts, to refueling and repair by 

autonomous robots, numerous technologies have been 

developed. The Space Shuttle program repeatedly 

demonstrated the value of being able to capture a client 

spacecraft, return it to Earth for repairs and upgrades 

(Palapa-B2 and Westar VI) or to conduct these 

operations in orbit (Hubble Space Telescope), and to 

assemble and supply large spacecraft (ISS) [2]. Due to 

the cost and risk associated with crewed missions, the 

focus of OOS research in the 1990s shifted towards 

robotic on-orbit servicing. Following the 

groundbreaking Japanese mission ETS-VII in 1997 [3], 

NASA, DARPA and AFRL demonstrated OOS related 

capabilities with DART [4], XSS-10 [5], XSS-11 [6], 

ANGELS [7], MiTEx, and Orbital Express [8]. Orbital 

Express in 2007 demonstrated a series of end-to-end 

servicing activities, including autonomous rendezvous 

and capture, inspection, transferring fuel, and swapping 

Orbital Replacement Units (ORUs) containing batteries 

and flight computers. NASA and DARPA are about to 

follow up on Orbital Express by refueling a spacecraft in 

Low Earth Orbit during the Restore-L mission [9], and 

by servicing a GEO spacecraft on the RSGS (Robotic 

Servicing of Geosynchronous Satellites) mission [10]. 

Both Restore-L and RSGS are slated to be launched in 

2022. In 2020 and 2021, Northrop Grumman flew the 

Mission Extension Vehicles (MEV) to take over station 

keeping of GEO spacecraft [11, 12]. The MEV missions 

mark the first-ever instances of commercial OOS. 

All past robotic OOS demonstration missions from ETS-

VII through Orbital Express had a highly specialized 

robotic servicer conduct repair operations on a purpose-

built, cooperative servicing target smaller than the 

servicer. The target spacecraft maintained stable attitude 

during capture, featured fiducial markings facilitating 

relative navigation, and were equipped with load-bearing 

capture interfaces for robotic manipulators. Even the 

MEVs, docking with and stabilizing spacecraft not 

designed for OOS, are servicing fully functional 

spacecraft with stable attitude. Although not equipped 

with dedicated docking mechanisms, GEO spacecraft are 

equipped with apogee kick motors and prominent 

launcher adapter rings on their space deck, which are 

ideally suited as structural interfaces for station keeping 

purposes. Restore-L and RSGS will demonstrate more 

involved servicing operations on non-cooperative 

servicing clients. 

Overall, the safe approach, inspection, capture and 

servicing on a non-cooperative target spacecraft has not 

been achieved. After failures of their on-board 

computers or attitude control systems, target spacecraft 

can have pronounced tumbling motion. Combined with 

large antenna apertures or solar arrays, this motion 

makes approaching the target for inspection or capture 

hazardous. Structural hard points suitable for capture can 

be hard to access or can have high rates relative to the 

approaching chaser. This can lead to high loads during 

capture that can damage both the target and the chaser, 

leading to the generation of space debris.  

Therefore, in order to make OOS a safe, technologically 

mature, and economically viable part of spaceflight, 

major advances in the use of autonomy and artificial 

intelligence for in-space inspection, characterization of 

resident space objects, and intelligent path planning are 

required.  

The research reported in this paper closes parts of this 

capability gap by using the machine learning algorithm 

YOLO (You Only Look Once) V5, which is based on 

Convolutional Neural Networks (CNNs), to identify and 

localize spacecraft bodies, rocket nozzles, antenna 

apertures and solar arrays. In the OOS context, 

spacecraft bodies and rocket nozzles represent potential 

capture locations, whereas antenna apertures and solar 

arrays defines keep-out-zones, so that the chaser 

spacecraft does not collide with them or inhibit power 

generation or communication on the target. 

The present paper goes beyond research by Aarestad et 

al. using similar algorithms in identifying CubeSats for 

space situational awareness and space traffic 

management [13], and research by Chen et al. using 

region-based convolutional neural network (R-CNN) to 

track different features of satellites for docking [14].  

The paper first explains the concepts behind CNNs and 

the unique properties of the YOLO V5 algorithm in 

application to aerospace engineering. The paper 

proceeds to discuss the image database used to train the 

algorithm and describes the experiments used in the 

performance evaluation of the algorithm. The 

experiments were conducted in the Florida Tech Orbital 

Robotics Interaction, On-orbit servicing, and Navigation 

(ORION) laboratory, a facility developed to generate 

high-fidelity representations of spacecraft relative 

motion and orbital lighting conditions. The paper then 

discusses the results of the tests and the limitations and 

growth potential of the algorithms used.  
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DEEP LEARNING FOR COMPUTER VISION: 

FROM IMAGE CLASSIFICATION TO OBJECT 

DETECTION WITH YOLO V5 

Deep learning approaches to computer vision have 

achieved ever-more-impressive successes over the past 

two decades. Initially, progress was restricted to 

relatively straightforward image classification tasks. For 

example, CNNs of LeCun [15] accurately classified 

small (28-by-28), centered, grayscale images of the 10 

handwritten digits by an approach inspired by the 

neurophysiological studies of the visual cortex of cats by 

Hubel and Wiesel [16, 17] and the neocognitron of 

Fukushima [18], and exploited the efficient 

backpropagation algorithm of Rumelhart, et. al. [19]. 

Later, tremendous progress was achieved in image 

classification, peaking with the ImageNet Large Scale 

Visual Recognition Competition (ILSVRC) [20, 21], 

which was a yearly competition 2010-2017 that, among 

other tasks, challenged state-of-the-art image 

classification models to classify a dataset of 1.2m color 

images averaging 482-by-418 pixels from 1000 distinct 

classes. The ILSVRCs gave researchers an opportunity 

to showcase new developments in deep learning models. 

The competition ushered in GPU-enhanced CNNs with 

AlexNet [22], novel architectures such as VGGNet [23] 

and Inception [24], and new innovations such as 

advanced optimization techniques [25, 26], 

initializations, data augmentation (see a survey from 

[27]), and the models began to be trained quickly enough 

to permit the use of ensemble learning [28]. By 2015, the 

ResNet model [29] surpassed human capabilities at the 

ILSVRC classification task. 

With the ImageNet classification problem essentially 

solved, the ILSVRC and, with it, much of the computer 

vision community moved on to more challenging tasks 

than image classification, such as object localization, 

where the goal is to find the location of the most 

prominent object in an image and draw a bounding box 

around it. The object localization problem is, therefore, 

a regression problem where an image is input to the 

algorithm, and it predicts five numbers: 

(𝑜, 𝑥, 𝑦, 𝑤, ℎ)                                                                       (1) 

This includes four numbers specifying the bounding box: 

the coordinates of its center (𝑥, 𝑦), its width 𝑤, and its 

height ℎ, as we see in the Figure 2. 

The remaining number is an “objectness” score 𝑜, which 

is an estimated probability that the predicted bounding 

box has an object in it. Object localization algorithms 

attempt to minimize a loss function, typically the sum of 

squared errors for bounding box locations and 

dimensions with high objectness score. 

A combination of the image classification and object 

localization tasks is object detection, where the goal is 

not only to localize an object in the image but to 

simultaneously classify multiple objects from multiple 

object classes and localize each one. This paper focuses 

on solving the object detection problem for objects 

including spacecraft bodies, thrusters, antennas, and 

solar arrays applied to individual image frames from a 

camera feed under heavy computational restrictions. 

Each image in the dataset used in the project contains 

zero or more objects that have been manually labeled and 

localized (see the next section for more details on the 

dataset). 

 

Figure 2: A bounding box for a satellite body 

As such, object detectors are regression models that 

estimate not only the location of multiple bounding 

boxes and objectness scores but also an estimated 

probability mass function 𝒑 = (𝑝1 , 𝑝2, … , 𝑝𝑘), where 𝑝𝑖  

is the conditional probability the bounding box contains 

an object from class 𝑖 given that it contains an object and 

𝑘 is the number of classes. Altogether, a successful 

object detector will produce a (5+k)-dimensional point 

of the form 

(𝑜, 𝑥, 𝑦, 𝑤, ℎ, 𝒑)                                                                   (2) 

and produce such a point for each object in the image. 

For example, if an image from our dataset contains one 

solar array and one antenna, an object detector will 

predict 18 numbers across two 9-dimensional points. For 

the solar array, the object detector will ideally produce 

the values 

(1, 𝑥1, 𝑦1, 𝑤1, ℎ1, 1,0,0,0)                                                  (3) 

where (𝑥1, 𝑦1, 𝑤1, ℎ1) corresponds to a bounding box 

that tightly surrounds the solar array, the first 1 means 

the model predicts there is an object in the bounding box, 
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and the (1,0,0,0) implies the object is a solar array with 

probability 1 and another class with probability 0. 

Similarly, the point for the antenna should have 

probabilities (0,0,1,0) with an appropriate bounding 

box. 

How do object detectors find the bounding boxes? 

Classical (non-neural) object detectors, such as 

Histogram of Oriented Gradients (HOG) [30], used a 

“sliding window” approach estimated probability mass 

functions of the content of overlapping windows sliding 

left-to-right and top-to-bottom (like one would read in 

English) over the image, scanning the whole image and 

classifying each window. These models used non-neural 

classifiers like support vector machines (SVMs) since 

the computational cost of this method for traditional 

neural networks was prohibitively high. The first 

especially effective neural object detector, OverFeat 

[31], used a CNN with GPU-acceleration to speed up the 

sliding windows approach enough to be practical, but 

another issue emerged: pre-determining the window size 

did not produce very precise bounding boxes. 

From here, multiple popular object detectors emerged. 

Notably, region-based CNNs (R-CNNs) by Girshick et. 

al. [32] are based on the idea to segment the image into 

small chunks, use a selective search algorithm to 

combine similar regions into larger ones, and propose 

many candidate region to be fed into a CNN—a few 

thousand proposals are typical—which extract feature 

vectors from the regions, which are then fed into an SVM 

for objectness predictions and a regression algorithm for 

adjusting the bounding box dimensions for precision 

before classification. R-CNN’s accuracy is much better 

than its predecessors, but the computation speed of 

testing is very slow given the cost of selective search and 

for feeding a large number of regions into the CNN, 

making it a poor candidate for real-time object detection, 

even for non-spacecraft hardware. Fast R-CNN [33] 

feeds the entire image into the CNN, generating a feature 

map, from which region proposals are identified and 

selected by a region of interest (RoI) pooling layer and 

then fed into a fully connected neural network for both 

classification and bounding box regression. It also 

initializes the network with a classifier pre-trained to 

classify the ImageNet dataset, which speeds up training. 

Faster R-CNN [34] goes further and replaces selective 

search with a separate region proposal network (RPN) to 

predict the region proposals. In the same family is Mask 

R-CNN [35], which detects objects and further identifies 

the pixels corresponding to the object within the 

bounding box—performing an image segmentation 

task—at an additional computational cost, and region-

based fully convolutional network (R-FCN) [36], which 

replaces the fully connected layers after the RoI pooling 

with faster CNNs. These newer variants are fast enough 

to perform real-time object detection with conventional 

hardware in many use-cases, but spacecraft onboard 

computing resources are not sufficient to achieve 

accurate object detection at a useful framerate with these 

methods. 

The R-CNN family of object detectors are multi-stage 

models that propose regions with selective search or an 

RPN, apply the classification model on each region, and 

then perform post-processing to refine the bounding 

boxes and eliminate duplicated detections. Single-stage 

models, such as Single Shot Detectors (SSDs) [37] and 

the You Only Look Once (YOLO) [38] family of 

models, attempt to localize and classify objects both with 

a single neural network, going directly from image pixels 

to predicted objectness scores, bounding boxes, and class 

probabilities at once. SSDs achieve slightly less 

accuracy than Faster R-CNN but run a little faster. 

YOLO, on the other hand, can run much faster than the 

others. The original YOLO algorithm ran at 45 frames 

per second on a previous-generation GPU. Accuracy 

suffers somewhat with YOLO in exchange for the speed, 

but it is accurate enough for many use-cases. 

Importantly, YOLO can run at a lesser but still effective 

framerate using constrained computational resources 

suitable for onboard object detection. 

How does YOLO detect objects in just one stage so 

quickly? It partitions the input image into multiple grids 

of non-overlapping windows, predicts multiple 

bounding boxes centered in each grid rectangle along 

with class probabilities in each grid, and predicts class 

probabilities for objects in each window with bounding 

box probabilities weighted by objectness scores. It may 

sound expensive to do this for each window, but YOLO 

uses the convolutional method originating in OverFeat to 

make these predictions quickly. 

The grid approach to finding bounding boxes typically 

results in many overlapping bounding boxes that contain 

the same object. To deal with this, YOLO removes all 

such bounding boxes with low objectness scores and 

then uses a method called non-max suppression to 

choose the best box. Non-max suppression chooses the 

remaining bounding box with the highest objectness 

score and compares it to each other remaining bounding 

box. In this comparison, the area of the intersection of 

the boxes is divided by the area of their union (IoU)—if 

IoU is near 1, the box is deemed too similar to the high-

objectness box and is removed. This is an incredibly 

computationally cheap way to exclude lower-quality or 

redundant bounding boxes. 

Like Fast R-CNN and Faster R-CNN, YOLO uses a 

CNN pretrained for classifying the ImageNet dataset. 

But, unlike these models, YOLO converts the underlying 
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20-layer DarkNet CNN (the “backbone” of the model) to 

perform object detection in its entirety. It first adds four 

convolutional layers and two fully connected layers (the 

“neck” of the model) with randomly initialized weights 

to improve classification accuracy, and then adds a final 

layer (the “head” of the model) to predict both class 

probabilities and bounding boxes simultaneously. This 

segmentation of the CNN into a pretrained backbone, a 

neck to train to the dataset at hand, and the head to make 

the final prediction of bounding boxes and class 

probabilities has been an influential idea that has 

continued through the YOLO family and other models. 

YOLO9000 (YOLO V2) [39] makes some incremental 

improvements like adding batch normalization to the 

convolutional layers, using a higher resolution classifier, 

and fine-tuning the pretrained net to improve accuracy, 

as well as using finer grid to help with detecting small 

objects, removing fully connected layers to improve 

speed, and randomizing training image size to avoid a 

bias YOLO had toward the scale of training data. But, 

most notably, YOLO V2 introduced anchor boxes, 

which allow the net to pre-specify typical sizes, aspect 

ratios, and/or locations for each class. YOLO V2 selects 

these using K-means clustering on the training datas’ 

bounding boxes for each class, resulting in significantly 

higher accuracy at higher framerates. 

YOLO V3 [40] is, as its tech report states, an incremental 

improvement. It predicts objectness scores with logistic 

regression, replaces the final softmax layer in the 

classifier with independent logistic regression classifiers 

and replaces sum of squared error loss with binary cross-

entropy to improve in cases where there are overlapping 

labels for the same object (e.g. thruster and nozzle), 

makes multiple predictions at each grid cell, and 

implements a CNN similar to YOLO V2 but deeper (i.e. 

with more layers) and with shortcut connections 

pioneered in ResNets [29], which improve accuracy 

without much cost to speed. More interestingly, the 

authors further use an idea from Feature Pyramid 

Networks (FPNs) [41] that make bounding box and class 

probability predictions at three different scales and use 

them all to inform the object detection, which helps with 

predictions across scales. 

YOLO V4 [42], written by a different author than 

previous versions, makes some more incremental 

improvements, primarily adjusting how the CNN learns 

by performing wide-ranging hyperparameter tuning 

experiments involving the activations, loss functions, 

CNN architectures, data augmentation, regularization, 

normalization, and optimization algorithms. This results 

in small improvements across the board to training time, 

accuracy, and framerate.  

YOLO V5 [43] has been somewhat controversial, as the 

original author is no longer involved, and a third 

developer released a PyTorch implementation of a 

YOLO model named YOLO V5 with claims of 

superiority that are disputed by the second author. 

Controversy aside, performance of YOLO V4 and 

YOLO V5 seem very similar, but PyTorch is somewhat 

more convenient, so it is used in the remainder of the 

paper. 

TRAINING DATA SET 

To accomplish the goals of the research, an image dataset 

consisting of a total of 523 images of solar arrays, 

satellite bodies, antennas and thruster nozzles was 

developed. The images in the database come from the 

internet, from satellite models used in Kerbal Space 

Program, and from geometric models used in AGI 

Systems Tool Kit (STK). The images were chosen based 

on these criteria: (1) the object should be identifiable and 

each class should be distinguishable from one another to 

prevent any errors in labeling the data; (2) the shapes of 

the components in the images should resemble real life 

components; (3) no image should be used twice 

The dataset was then annotated by drawing bounding 

boxes around each object within each image with 

Roboflow [44]. Roboflow is a computer vision image 

annotating tool capable of automatically exporting 

annotated images in a convenient format. Figure 3 shows 

an illustration for the annotations. 

 

Figure 3: Classes and Annotations 

The overall dataset was then split into a training set with 

366 images, a validation set with 104 images and a 

testing set with 53 images. The number of annotations in 

each set is summarized in Figure 3. 

TESTING DATA DEVELOPMENT 

The testing video dataset was acquired using the Florida 

Tech ORION Lab [45]. The ORION Lab’s planar, 

cartesian Maneuver Kinematics Simulator shown in 

Figure 4 has a workspace of 5.5 m × 3.5 m. The primary 

component of the kinematics simulator is a horizontal 
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2 DOF motion table capable of positioning a payload of 

80 kg at a maximum speed of 0.25 m/s and a maximum 

acceleration of 1 m/s2 along both linear axes. The motion 

table is designed to carry a wide range of equipment, 

such as small industrial manipulators or pan-tilt 

mechanisms. The ORION pan-tilt mechanisms are 

custom designed to carry a test article with mass 20 kg 

and dimensions 0.5 m × 0.5 m × 0.5 m. The motion 

envelope is ±90° in elevation and infinite rotation in 

azimuth, with maximum rotation rate 60°/s and 

maximum acceleration 60°/s2 about each axis. The test 

article is supplied with power and Ethernet connections 

via a slip ring around the azimuth axis. The Maneuver 

Kinematics Simulator currently employs two pan-tilt 

mechanisms. The stationary pan-tilt head is used to 

generate the attitude motion of a target spacecraft model. 

The target model has geometrical and surface features 

typically found on a satellite, such as parabolic antenna, 

thruster nozzles, solar arrays, etc. The moving pan-tilt 

head is designed to carry a spacecraft robotics test 

vehicle equipped with a number of robotic manipulators, 

a capture tool, multiple cameras and distance sensors.  

As shown in Figure 5, the ORION simulator uses 

commercial-off-the-shelf components to generate a light 

source sufficiently bright to exceed the dynamic range of 

common optical sensors while providing a narrow beam 

angle. The walls, floor, and ceiling of the testbed are 

painted a low-reflectivity black and all windows are 

covered with black-out blinds to fully control the lighting 

conditions. The selected light source is a Litepanels Hilio 

D12 LED panel. The panel generates light with a color 

temperature of 5,600 K (daylight balanced) with 350 W 

of power. The intensity is equivalent to a 2,000 W 

incandescent lamp. The intensity can be continuously 

dimmed from 100% to 0%, and the beam angle can be 

varied between 10° and 60° using lens inserts. Therefore, 

the light can be used to simulate solar illumination and 

also the weaker and diffuse Earth albedo. The LED panel 

is mounted on a wheeled tripod for quick positioning 

anywhere within the lab space.  

For testing data, sixteen test videos of the target object 

mock-up were shot by the chaser spacecraft approaching 

the target to evaluate the performance of the algorithm. 

Out of the sixteen, videos 1 through 4 included the target 

vehicle either being stationary or yawing or both yawing 

and pitching, while the chaser was approaching with a 

constant velocity in either x, y or both x and y directions. 

The last 12 videos were shot by turning off the overhead 

lights and using the LED light panel from Figure 5 while 

the chaser followed the same constraints used in the first 

4 videos.  

Some images from the videos along with constraints 

used are summarized in Figure 6 - Figure 9. The motion 

and lighting conditions in those test cases were selected 

to closely resemble real-life rendezvous missions.  

TRAINING AND TEST Results 

Training 

As expected, the most realistic videos were the last 12 

cases, with the light source in-plane with chaser and 

target. Only test case 3 was analyzed for this paper due 

to its high complexity in comparison with the other 

videos. 

The default Ultralytics YOLO V5 network [43] along 

with several pre-processing image augmentation 

techniques listed below were used to obtain results 

mentioned in the paper. 

The following augmentation was applied to create 3 

versions of each source image: 

 

Figure 4: ORION Spacecraft Maneuver Kinematics 

Simulator 

 

Figure 5: Chaser Spacecraft and LED Light Panel 

 

2 DOF Motion Table

2 DOF Pan-

Tilt Head 

with Target 

Object

2 DOF 

Pan-Tilt 

Head 

with 

Chaser 

Spacecraft

x

y
z

yaw

pitch

roll
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1. Randomly crop between 0 and 34 percent of the 

image 

2. Random rotation of between -28 and +28 degrees 

3. Random brightness adjustment of between -49 and 

+49 percent 

4. Random Gaussian blur of between 0 and 10 pixels 

5. Salt and pepper noise (dark spots in white regions 

and white spots in dark regions) was applied to 13 

percent of pixels. 

These augmentation techniques were chosen based on 

how the images in the dataset could closely resemble 

spacecraft in outer atmosphere. With these augmentation 

techniques, the algorithm achieved the highest average 

true positive values of 75% for the body, 64% for the 

solar array, 54% for the antenna and 15% for thrusters. 

The code currently classifies in real-time at the speed of 

140 frames per second (FPS) using a Tesla P100 GPU 

via Google Colab. Figure 10, Figure 11 and Figure 12 

contain results of the object detection algorithm and 

other metrics essential for measuring performance.  

In Figure 10, rows of the confusion matrix correspond to 

the predicted values and columns correspond to the 

actual values. Ideally, all objects would be classified 

properly, meaning the diagonal should include all 

classifications in its row and column, which was 

approximately true for all classes except thrusters so far. 

The bottom row represents false negatives (FN) 

corresponding objects that were in the frame but failed 

to be detected by the algorithm, where we noticed some 

significant problems with thrusters, lesser mistakes with 

antennas, but broad success with bodies and solar arrays. 

The rightmost column represents false positives (FP) 

where the algorithm detected an object where there was 

none. Here, most mistakes were again associated with 

thrusters.  

Thrusters and antennas currently perform poorly 

partially because thrusters come in many different 

shapes and patterns. A classical bell nozzle-shaped 

thruster, an ion thruster, and a hole in the satellite body 

 
Light source:                            Overhead 
Target yaw | pitch | roll rates:  10 | 0 | 0 deg/s 
Chaser x | y | z velocity:          10 | 0 | 0 cm/s 

Figure 6: Test Case 1 

 
Light source:                            Overhead 
Target yaw | pitch | roll rates:  20 | 10 | 0 deg/s 
Chaser x | y | z velocity:          10 | 10 | 0 cm/s 

Figure 7: Test Case 2 

 
Light source:                            In plane, at 135° yaw 
Target yaw | pitch | roll rates:  10 | 0 | 0 deg/s 
Chaser x | y | z velocity:          10 | 10 | 0 cm/s 

Figure 8: Test Case 3 

 
Light source:                            In plane, at 150° yaw 
Target yaw | pitch | roll rates:  10 | 0 | 0 deg/s 
Chaser x | y | z velocity:          10 | 10 | 0 cm/s 

Figure 9: Test Case 4 
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were classified as thrusters. Similarly, antennas have 

different shapes such as a parabolic, helical, and horn 

antennas. This lack of segregation in the dataset has led 

to fewer than the actual number of annotations for these 

classes causing error in the algorithm. 

The plots in Figure 11 demonstrates the trend in the 

precision, recall and mAP values. Higher the precision, 

recall and mAP, better the algorithm works. 

Precision is the ratio of true positive (TP) values to the 

sum of true positive and false positive (FP) values. 

Whereas recall is the ratio of true positive and false 

negative values.  

mAP as defined in equation 4 is the mean average 

precision over all the classes in the dataset. mAP@0.5 is 

the mean average precision across all classes at IoU 

 

Figure 10: Confusion Matrix 

 

Figure 11: Training Metrics 
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threshold 0.5. mAP@0.5:0.95 is the average mAP over 

different IoU thresholds equally spaced from 0.5 to 0.95. 

 

𝑚𝐴𝑃 =
1

|𝑐𝑙𝑎𝑠𝑠𝑒𝑠|
Σ𝑐𝜖𝑐𝑙𝑎𝑠𝑠𝑒𝑠#

𝑇𝑃(𝑐)

#𝑇𝑃(𝑐) + #𝐹𝑃(𝑐)
      (4) 

 

Figure 12 shows the precision-recall curve for each class. 

As seen here as well, the precision value drops with 

increasing recall values for thrusters while, antennas 

perform almost around the average curve for all classes 

and, solar panels and body stay above the average curve. 

The plots indicate the model is undertrained. The results 

can be improved due to the lack of curves plateauing 

before or at 100 epochs by simply training the model 

longer.  

Testing 

To continue evaluating the algorithm, case 3 video from 

Figure 8 was tested with the weights generated from the 

training algorithm. Figure 13 shows a frame from the 

video before and after using YOLO V5 inference. 

Table 1: Error Analysis Summary of Case 3 Test 

Video 

  
Average 

Accuracy 
Actual  

YOLO 

Detections 
FN FP 

Thrusters 1.10% 16 1 0 0 

Antennas 52% 19 35 8 10 

Body 52% 37 28 9 1 

Solar 

Panels 
62.90% 42 32 9 2 

Though the video is inferred at 140 FPS, the inferred 

video was analyzed every second for 37 seconds for 

simplicity to get an estimate of the performance of the 

algorithm. Table 1 below contains a summary of the 

error analysis of case 3 test video. 

 

Figure 13: Before and After YOLO V5 

The term “actual” in Table 1 corresponds to the feature 

visibility in the video at that second, “YOLO detections” 

state how many times the algorithm detected a feature, 

FN and FP correspond to the correctness of the YOLO 

detection. 

Antennas have the highest FP values. It was seen that the 

algorithm frequently detected the chaser’s stand and the 

 

Figure 12: Multi-Class P-R Curve 
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rails of the test bed as antenna because of its low gain 

antenna like shape and, an emergency light of the 

ORION lab in the background because of its parabolic 

shape.  Figure 14 shows a collage of frames of the 

observation. 

All three classes – antennas, body and solar panels 

showed a high false negative value which is problematic. 

However, case 3 has the worst lighting conditions out of 

all the videos that were shot at the ORION lab. 

Additionally, the training dataset chosen does not 

resemble the testing dataset accurately since the training 

dataset images are well lit and relatively easier to 

identify leading to a spike in the FN. 

Finally, the worst performing class is thrusters as 

discussed earlier. 

Some ways to improve accuracy would be to apply more 

augmentation techniques, generate images of satellites in 

black background using CAD software Blender as 

discussed in [13], and segregate the thruster and antenna 

dataset into multiple other classes based on shape and 

pattern. 

 

Figure 14: Test Observation - Antenna and Solar 

Panels 

CONCLUSION 

Based on initial testing of YOLO V5 on the satellite 

dataset developed by the ORION lab, test video 

observation, analysis and results discussed in this paper, 

real-time detection of different components of satellite is 

feasible. Since the algorithm is not completely reliable at 

the moment, ongoing and future research focuses on 

incorporating additional pre-processing and 

augmentation techniques, ensemble methods and 

regression techniques for the bounding boxes to increase 

the detection accuracy and reliability of the algorithm. 
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