14 research outputs found

    Transferrable optimization of spray-coated PbI2 films for perovskite solar cell fabrication

    Get PDF
    Ultrasonic spray coating is a promising pathway to scaling-up of perovskite solar cell production that can be implemented on any scale - from table-top to mass production. However, unlike spin-coating, spray coating processes are not easily described by a set of machine-independent parameters. In this work, in situ measurement and modeling of wet film thickness and evaporation rate are presented as a machine-independent description of the ultrasonic spray coating process, and applied to fabrication process optimization for high-performing perovskite solar cells. Optimization based on physical wet film parameters instead of machine settings leads to better understanding of the key factors affecting film quality and enables process transfer to another fabrication environment. Spray coated PbI2 film morphology is analyzed under a range of coating conditions and strong correlation is observed between spray coating parameters and PbI2 film uniformity. Premature precipitation and sparse nucleation are suggested as causes of film non-uniformity, and optimal process parameters are identified. Device fabrication based on the optimized process is demonstrated under ambient conditions with a relative humidity of 50%, achieving a power conversion efficiency of 13% in 1 cm2 area devices, with negligible hysteresis

    How the Charge-Neutrality Level of Interface States Controls Energy Level Alignment in Cathode Contacts of Organic Bulk-Heterojunction Solar Cells

    Get PDF
    Electronic equilibration at the metal–organic interface, leading to equalization of the Fermi levels, is a key process in organic optoelectronic devices. How the energy levels are set across the interface determines carrier extraction at the contact and also limits the achievable open-circuit voltage under illumination. Here, we report an extensive investigation of the cathode energy equilibration of organic bulk-heterojunction solar cells. We show that the potential to balance the mismatch between the cathode metal and the organic layer Fermi levels is divided into two contributions: spatially extended band bending in the organic bulk and voltage drop at the interface dipole layer caused by a net charge transfer. We scan the operation of the cathode under a varied set of conditions, using metals of different work functions in the range of 2 eV, different fullerene acceptors, and several cathode interlayers. The measurements allow us to locate the charge-neutrality level within the interface density of sates and calculate the corresponding dipole layer strength. The dipole layer withstands a large part of the total Fermi level mismatch when the polymer:fullerene blend ratio approaches 1:1, producing the practical alignment between the metal Fermi level and the charge-neutrality level. Origin of the interface states is linked with fullerene reduced molecules covering the metal contact. The dipole contribution, and consequently the band bending, is highly sensitive to the nature and amount of fullerene molecules forming the interface density of states. Our analysis provides a detailed picture of the evolution of the potentials in the bulk and the interface of the solar cell when forward voltage is applied or when photogeneration takes place

    Global, regional, and national under-5 mortality, adult mortality, age-specific mortality, and life expectancy, 1970–2016: a systematic analysis for the Global Burden of Disease Study 2016

    Get PDF
    BACKGROUND: Detailed assessments of mortality patterns, particularly age-specific mortality, represent a crucial input that enables health systems to target interventions to specific populations. Understanding how all-cause mortality has changed with respect to development status can identify exemplars for best practice. To accomplish this, the Global Burden of Diseases, Injuries, and Risk Factors Study 2016 (GBD 2016) estimated age-specific and sex-specific all-cause mortality between 1970 and 2016 for 195 countries and territories and at the subnational level for the five countries with a population greater than 200 million in 2016. METHODS: We have evaluated how well civil registration systems captured deaths using a set of demographic methods called death distribution methods for adults and from consideration of survey and census data for children younger than 5 years. We generated an overall assessment of completeness of registration of deaths by dividing registered deaths in each location-year by our estimate of all-age deaths generated from our overall estimation process. For 163 locations, including subnational units in countries with a population greater than 200 million with complete vital registration (VR) systems, our estimates were largely driven by the observed data, with corrections for small fluctuations in numbers and estimation for recent years where there were lags in data reporting (lags were variable by location, generally between 1 year and 6 years). For other locations, we took advantage of different data sources available to measure under-5 mortality rates (U5MR) using complete birth histories, summary birth histories, and incomplete VR with adjustments; we measured adult mortality rate (the probability of death in individuals aged 15-60 years) using adjusted incomplete VR, sibling histories, and household death recall. We used the U5MR and adult mortality rate, together with crude death rate due to HIV in the GBD model life table system, to estimate age-specific and sex-specific death rates for each location-year. Using various international databases, we identified fatal discontinuities, which we defined as increases in the death rate of more than one death per million, resulting from conflict and terrorism, natural disasters, major transport or technological accidents, and a subset of epidemic infectious diseases; these were added to estimates in the relevant years. In 47 countries with an identified peak adult prevalence for HIV/AIDS of more than 0·5% and where VR systems were less than 65% complete, we informed our estimates of age-sex-specific mortality using the Estimation and Projection Package (EPP)-Spectrum model fitted to national HIV/AIDS prevalence surveys and antenatal clinic serosurveillance systems. We estimated stillbirths, early neonatal, late neonatal, and childhood mortality using both survey and VR data in spatiotemporal Gaussian process regression models. We estimated abridged life tables for all location-years using age-specific death rates. We grouped locations into development quintiles based on the Socio-demographic Index (SDI) and analysed mortality trends by quintile. Using spline regression, we estimated the expected mortality rate for each age-sex group as a function of SDI. We identified countries with higher life expectancy than expected by comparing observed life expectancy to anticipated life expectancy on the basis of development status alone. FINDINGS: Completeness in the registration of deaths increased from 28% in 1970 to a peak of 45% in 2013; completeness was lower after 2013 because of lags in reporting. Total deaths in children younger than 5 years decreased from 1970 to 2016, and slower decreases occurred at ages 5-24 years. By contrast, numbers of adult deaths increased in each 5-year age bracket above the age of 25 years. The distribution of annualised rates of change in age-specific mortality rate differed over the period 2000 to 2016 compared with earlier decades: increasing annualised rates of change were less frequent, although rising annualised rates of change still occurred in some locations, particularly for adolescent and younger adult age groups. Rates of stillbirths and under-5 mortality both decreased globally from 1970. Evidence for global convergence of death rates was mixed; although the absolute difference between age-standardised death rates narrowed between countries at the lowest and highest levels of SDI, the ratio of these death rates-a measure of relative inequality-increased slightly. There was a strong shift between 1970 and 2016 toward higher life expectancy, most noticeably at higher levels of SDI. Among countries with populations greater than 1 million in 2016, life expectancy at birth was highest for women in Japan, at 86·9 years (95% UI 86·7-87·2), and for men in Singapore, at 81·3 years (78·8-83·7) in 2016. Male life expectancy was generally lower than female life expectancy between 1970 and 2016, an

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    Advanced Studies on Dye-Sensitized Solar Cells

    Get PDF
    The conversion of sunlight into electricity is one of the most promising energy sources because is renewable and available worldwide. Therefore, is desirable to develop low cost, stable and efficient photovoltaic devices that can compete with the expensive silicon solar panels. Dye-sensitized solar cells (DSC) are a promising photovoltaic technology based on low-cost materials and fabrication processes with power-conversion efficiencies over 12%. DSC harvest light thanks to a photoactive organic molecule, and extracts the charges through different materials. The analysis of the working principles of these complex devices is essential in order to achieve further improvements on the solar cell efficiency. The aim of this thesis is to analyze and identify the electrical interactions between the internal materials and interfaces of a DSC by means of impedance spectroscopy (IS). We provide useful interpretation of IS applied to DSC and insights on DSC development such as implementation of photonic crystals and up-scaling to modules, as a first step for a future commercialization.Convertir la llum solar en electricitat és una de les maneres més prometedores d'obtindre energía, ja que és inesgotable i disponible arreu del món. Primer és necessari desenvolupar dispositius fotovoltaics què siguin eficients, estables i de baix cost, i així poder competir en el mercat amb les actuals cèl·lules solars de silici. Les cèl·lules solars sensitivitzades amb colorant (DSC) ‎ja han assolit eficiències per sobre del 12% amb materials i processos de fabricació senzills i barats. Les DSC recol·lecten la llum gracies a unes molècules fotoactives (colorant) i extrauen les càrregues a través de diferents materials semiconductors. Analitzar els principis de funcionament d'aquests dispositius és essencial per a assolir futures millores en eficiència i estabilitat. L'objectiu d'aquesta tesi és analitzar i identificar les interaccións elèctriques entre els materials i interfases internes d'una DSC mitjançant l'espectroscopía d'impedància (IS). El treball proporciona una interpretació pràctica de la IS aplicada a les DSC i també altres idees per al desenvolupament de les DSC com ara l'ús de cristalls fotònics i la fabricació de moduls de gran àrea, com a primer pas per a una futura comercialització

    Monitoring the stability and degradation mechanisms of perovskite solar cells by in situ and operando characterization

    No full text
    Solar energy technologies are among the most promising renewable energy sources. The massive growth of global solar generating capacity to multi-terawatt scale is now a requirement to mitigate climate change. Perovskite solar cells (PSCs) are one of the most efficient and cost-effective photovoltaic (PV) technologies with efficiencies reaching the 26% mark. They have attracted substantial interest due to their light-harvesting capacity combined with a low cost of manufacturing. However, unsolved questions of perovskite stability are still a concern, challenging the potential of widespread commercialization. Thus, it is imperative to advance in the understanding of the degradation mechanism of PSCs under in situ and operando conditions where variable and unpredictable stressors intervene, in parallel or sequentially, on the device stability. This review aims to debate the advantages behind in situ and operando characterization to complement stability-testing of PV parameters in the strive to achieve competitive stability and reproducibility in PSCs. We consider the impact of applying single and multi-stressors under constant monitoring of alterations observed in PSC components or complete devices. We outline key future research directions to achieve the long-term stability necessary for the successful commercialization of this promising PV technology

    How the Charge-Neutrality Level of Interface States Controls Energy Level Alignment in Cathode Contacts of Organic Bulk-Heterojunction Solar Cells

    No full text
    Electronic equilibration at the metal–organic interface, leading to equalization of the Fermi levels, is a key process in organic optoelectronic devices. How the energy levels are set across the interface determines carrier extraction at the contact and also limits the achievable open-circuit voltage under illumination. Here, we report an extensive investigation of the cathode energy equilibration of organic bulk-heterojunction solar cells. We show that the potential to balance the mismatch between the cathode metal and the organic layer Fermi levels is divided into two contributions: spatially extended band bending in the organic bulk and voltage drop at the interface dipole layer caused by a net charge transfer. We scan the operation of the cathode under a varied set of conditions, using metals of different work functions in the range of ∼2 eV, different fullerene acceptors, and several cathode interlayers. The measurements allow us to locate the charge-neutrality level within the interface density of sates and calculate the corresponding dipole layer strength. The dipole layer withstands a large part of the total Fermi level mismatch when the polymer:fullerene blend ratio approaches ∼1:1, producing the practical alignment between the metal Fermi level and the charge-neutrality level. Origin of the interface states is linked with fullerene reduced molecules covering the metal contact. The dipole contribution, and consequently the band bending, is highly sensitive to the nature and amount of fullerene molecules forming the interface density of states. Our analysis provides a detailed picture of the evolution of the <i>potentials</i> in the bulk and the interface of the solar cell when forward <i>voltage</i> is applied or when photogeneration takes place

    Machine Learning-Enhanced High-Throughput Fabrication and Optimization of Quasi-2D Ruddlesden-Popper Perovskite Solar Cells

    No full text
    Organic-inorganic perovskite solar cells (PSCs) are promising candidates for next-generation, inexpensive solar panels due to their high power conversion efficiency, which is on par with their commercial silicon counterparts. However, PSCs suffer from poor stability. A new subset of PSCs, quasi-two-dimensional Ruddlesden-Popper PSCs (quasi-2D RP PSCs), is known for improved photostability and superior resilience to environmental conditions in comparison with three-dimensional (3D) metal-halide PSCs. To expedite the search of new quasi-2D RP PSCs we report a combinatorial, machine learning (ML) enhanced high-throughput perovskite film fabrication and optimization study. We designed a bespoke experiment strategy and produced perovskite films with a range of different compositions through a fully automated drop-casting process. The performance and characterization data of these solar cells were used to train a ML model that allowed for material parameter optimization and directed the design of improved materials. The ML optimized quasi-2D RP perovskite films yielded solar cells with power conversion efficiencies reaching 16.3%
    corecore