76 research outputs found

    The Effects of Stimulus Package, Lockdown and Positive Cases of COVID-19 on the Stock Returns in the U.S. and U.K.

    Get PDF
    The pandemic of COVID-19, which spreads to almost the whole world, has decreased the global GDP of 2020 by 3.3% (The World Bank, 2021), and it is predicted to decrease the global GDP of 2021 by 5.2% (International Monetary Fund, 2020). During this unprecedented pandemic, the stock markets became much more risky and volatile. As the pandemic is predicted to keep going for a longer time, it is critical for the government and investors to understand how the pandemic affects the stock markets. Knowing that relationship may help them to find better methods to control and reduce the risk of stock markets in the future. Based on existing findings, we conduct an analysis of how the stimulus packages, lockdown policies, cumulative positive cases of COVID-19 and growth rate of cases affect the stock returns in the U.S. and U.K. during the pandemic. Our main findings suggest that the lockdown policies and positive cases have positive impacts on the stock markets in the U.S. and U.K., but only the U.K. stock market negatively respond to the growth rate of cases. Moreover, we find the stimulus packages do not affect both markets. Further, our results suggest that the events do not have different effects on small and large capitalization stocks in both countries

    Investigation of Core Transport Barriers in DIII-D Discharges with off-axis Te Profile Peaks

    Full text link
    DIII-D discharges that transition to H-mode solely with off-axis electron cyclotron heating (ECH) often exhibit strong off-axis peaking of electron temperature profiles at the heating location. Electron heat transport properties near these off-axis temperature peaks have been studied using modulated ECH. The Fourier analyzed electron temperature data have been used to infer electron thermal diffusivity. Comparisons with numerical solutions of the time-dependent electron thermal equation find that the data are consistent with a narrow region with electron diffusivity χe\chi_e an order of magnitude lower than the average value across the plasma, suggesting an electron internal transport barrier (ITB) near the ECH heating location. Detailed profile analysis and equilibrium reconstructions suggest that the formation of these ITBs are correlated with off-axis values of the safety factor qq being near 1. Furthermore, the ECH driven H-mode discharges demonstrate more rapid electron heating rate near the ECH deposition location than L-mode discharges with higher auxiliary ECH heating power. Additional modeling attributes this difference to the modification of electron heat transport in the core at the L-H transition, which also sustains the off-axis electron temperature peaks

    A Thermoplastic Elastomer Belt Based Robotic Gripper

    Full text link
    Novel robotic grippers have captured increasing interests recently because of their abilities to adapt to varieties of circumstances and their powerful functionalities. Differing from traditional gripper with mechanical components-made fingers, novel robotic grippers are typically made of novel structures and materials, using a novel manufacturing process. In this paper, a novel robotic gripper with external frame and internal thermoplastic elastomer belt-made net is proposed. The gripper grasps objects using the friction between the net and objects. It has the ability of adaptive gripping through flexible contact surface. Stress simulation has been used to explore the regularity between the normal stress on the net and the deformation of the net. Experiments are conducted on a variety of objects to measure the force needed to reliably grip and hold the object. Test results show that the gripper can successfully grip objects with varying shape, dimensions, and textures. It is promising that the gripper can be used for grasping fragile objects in the industry or out in the field, and also grasping the marine organisms without hurting them

    Population Redistribution among Multiple Electronic States of Molecular Nitrogen Ions in Strong Laser Fields

    Full text link
    We carry out a combined theoretical and experimental investigation on the population distributions in the ground and excited states of tunnel ionized N2 molecules at various driver wavelengths in the near- and mid-infrared range. Our results reveal that efficient couplings (i.e., population exchanges) between the ground state and the excited states occur in strong laser fields. The couplings result in the population inversion between the ground and the excited states at the wavelengths near 800 nm, which is verified by our experiment by observing the amplification of a seed at ~391 nm. The result provides insight into the mechanism of free-space nitrogen ion lasers generated in remote air with strong femtosecond laser pulses.Comment: 18 pages, 4 figure

    A reproducing kernel method for solving singularly perturbed delay parabolic partial differential equations

    Get PDF
    In this article, we put forward an efficient method on the foundation of a few reproducing kernel spaces(RK-spaces) and the collocation method to seek the solution of delay parabolic partial differential equations(PDEs) with singular perturbation. The approximated solution  to the equations is formulated and proved the exact solution is uniformly convergent by the solution. Furthermore, the partial differentiation of the approximated solution is also proved the partial derivatives of the exact solution is uniformly convergent by the solution. Meanwhile, we show that the accuracy of our method is in the order of T/n where T is the final time and n is the number of spatial (and time) discretization in the domain of interests. Three numerical examples are put forward to demonstrate the effectiveness of our presented scheme

    Mechanism of sphingolipid homeostasis revealed by structural analysis of \u3ci\u3eArabidopsis\u3c/i\u3e SPT-ORM1 complex

    Get PDF
    The serine palmitoyltransferase (SPT) complex catalyzes the first and rate-limiting step in sphingolipid biosynthesis in all eukaryotes. ORM/ORMDL proteins are negative regulators of SPT that respond to cellular sphingolipid levels. However, the molecular basis underlying ORM/ORMDL-dependent homeostatic regulation of SPT is not well understood.We determined the cryo–electron microscopy structure of Arabidopsis SPT-ORM1 complex, composed of LCB1, LCB2a, SPTssa, and ORM1, in an inhibited state. A ceramide molecule is sandwiched between ORM1 and LCB2a in the cytosolic membrane leaflet. Ceramide binding is critical for the ORM1-dependent SPT repression, and dihydroceramides and phytoceramides differentially affect this repression. A hybrid β sheet, formed by the amino termini of ORM1 and LCB2a and induced by ceramide binding, stabilizes the amino terminus of ORM1 in an inhibitory conformation. Our findings provide mechanistic insights into sphingolipid homeostatic regulation via the binding of ceramide to the SPT-ORM/ORMDL complex that may have implications for plant-specific processes such as the hypersensitive response for microbial pathogen resistance

    Regulation mechanisms of disulfidptosis-related genes in ankylosing spondylitis and inflammatory bowel disease

    Get PDF
    IntroductionDisulfidptosis is a recently identified form of cell death that contributes to maintaining the internal environment balance of an organism. However, the molecular basis of disulfidptosis in ulcerative colitis (UC), ankylosing spondylitis (AS), and Crohn’s disease (CD) has not been thoroughly explored.MethodsFirstly, the differentially expressed genes (DEGs) and disulfidptosis-associated genes (DAGs) were obtained through differential analysis between diseases (AS, CD, and UC) and control groups. After the disulfidptosis score was acquired using the single-sample gene set enrichment analysis (ssGSEA) algorithm, the DE-DAGs were screened by overlapping DAGs and DEGs of the three diseases. Next, the feature genes were selected through a combination of machine learning algorithms, receiver operating characteristic (ROC) curves, and expression analysis. Based on these feature genes, nomograms were created for AS, CD and UC. The co-feature genes were then identified by taking the intersections of the genes featured in all three diseases. Meanwhile, single-gene set enrichment analysis (GSEA) and the TF-mRNA-miRNA network were utilized to investigate the molecular mechanisms of the co-feature genes. To validate the expression differences of the co-feature genes between healthy controls and patients (AS and IBD), RT-PCR was performed. Lastly, mendelian randomization (MR) analysis was utilized to explore the causality between genetic variants of S100A12 with AS, UC and CD.ResultsIn this study, 11 DE-DAGs were obtained. Functional enrichment analysis revealed their involvement in cytokine production and fatty acid biosynthesis. Latterly, AS/CD/UC -feature genes were derived, and they all had decent diagnostic performance. Through evaluation, the performance of the nomogram was decent for three diseases. Then, 2 co-feature genes (S100A12 and LILRA5) were obtained. The GSEA enrichment results indicated that the co-feature genes were mainly enriched in the cytokine-cytokine receptor interaction and drug metabolism cytochrome P450. As shown by functional experiments, there was a correlation between the mRNA expression of S100A12 with AS, UC and CD. Additionally, a causal connection between S100A12 and IBD was detected through MR analysis.DiscussionIn this study, 2 co-feature genes (S100A12 and LILRA5) were screened, and their functions were investigated in AS, CD and UC, providing a basis for further research into diagnosis and treatment

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    The Effects of Stimulus Package, Lockdown and Positive Cases of COVID-19 on the Stock Returns in the U.S. and U.K.

    No full text
    The pandemic of COVID-19, which spreads to almost the whole world, has decreased the global GDP of 2020 by 3.3% (The World Bank, 2021), and it is predicted to decrease the global GDP of 2021 by 5.2% (International Monetary Fund, 2020). During this unprecedented pandemic, the stock markets became much more risky and volatile. As the pandemic is predicted to keep going for a longer time, it is critical for the government and investors to understand how the pandemic affects the stock markets. Knowing that relationship may help them to find better methods to control and reduce the risk of stock markets in the future. Based on existing findings, we conduct an analysis of how the stimulus packages, lockdown policies, cumulative positive cases of COVID-19 and growth rate of cases affect the stock returns in the U.S. and U.K. during the pandemic. Our main findings suggest that the lockdown policies and positive cases have positive impacts on the stock markets in the U.S. and U.K., but only the U.K. stock market negatively respond to the growth rate of cases. Moreover, we find the stimulus packages do not affect both markets. Further, our results suggest that the events do not have different effects on small and large capitalization stocks in both countries
    corecore