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Introduction: Disulfidptosis is a recently identified form of cell death that

contributes to maintaining the internal environment balance of an organism.

However, the molecular basis of disulfidptosis in ulcerative colitis (UC),

ankylosing spondylitis (AS), and Crohn ’s disease (CD) has not been

thoroughly explored.

Methods: Firstly, the differentially expressed genes (DEGs) and disulfidptosis-

associated genes (DAGs) were obtained through differential analysis between

diseases (AS, CD, and UC) and control groups. After the disulfidptosis score was

acquired using the single-sample gene set enrichment analysis (ssGSEA)

algorithm, the DE-DAGs were screened by overlapping DAGs and DEGs of the

three diseases. Next, the feature genes were selected through a combination of

machine learning algorithms, receiver operating characteristic (ROC) curves, and

expression analysis. Based on these feature genes, nomograms were created for

AS, CD and UC. The co-feature genes were then identified by taking the

intersections of the genes featured in all three diseases. Meanwhile, single-

gene set enrichment analysis (GSEA) and the TF-mRNA-miRNA network were

utilized to investigate the molecular mechanisms of the co-feature genes. To

validate the expression differences of the co-feature genes between healthy

controls and patients (AS and IBD), RT-PCR was performed. Lastly, mendelian

randomization (MR) analysis was utilized to explore the causality between

genetic variants of S100A12 with AS, UC and CD.

Results: In this study, 11 DE-DAGs were obtained. Functional enrichment analysis

revealed their involvement in cytokine production and fatty acid biosynthesis.

Latterly, AS/CD/UC -feature genes were derived, and they all had decent

diagnostic performance. Through evaluation, the performance of the

nomogram was decent for three diseases. Then, 2 co-feature genes (S100A12

and LILRA5) were obtained. The GSEA enrichment results indicated that the co-

feature genes were mainly enriched in the cytokine-cytokine receptor

interaction and drug metabolism cytochrome P450. As shown by functional
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experiments, there was a correlation between the mRNA expression of S100A12

with AS, UC and CD. Additionally, a causal connection between S100A12 and IBD

was detected through MR analysis.

Discussion: In this study, 2 co-feature genes (S100A12 and LILRA5) were

screened, and their functions were investigated in AS, CD and UC, providing a

basis for further research into diagnosis and treatment.
KEYWORDS

bioinformatics, mendelian randomization, disulfidptosis, ankylosing spondylitis,
ulcerative colitis, Crohn’s disease
1 Introduction

Ankylosing spondylitis (AS) and inflammatory bowel disease

(IBD) are two common autoimmune conditions, usually share

common clinical features such as sacroiliitis, dactylitis and

enthesitis, as well as extra-articular manifestations such as

intestinal inflammation, psoriasis and uveitis (1, 2). AS is a

prevalent chronic immune-mediated condition characterized by

inflammation in the axial skeleton. Epidemiological research

indicates that AS has a worldwide incidence rate ranging from

0.1% to 1.4%, with a higher occurrence in males compared to

females (3). IBD is a chronic condition impacting the digestive

system and can manifest in various forms, with the most prevalent

subtypes being ulcerative colitis (UC) and Crohn’s disease (CD) (4).

Over the past decade, the incidence of IBD has increased from 0.3%

to 1.3% and continues to rise (5). Common symptoms in IBD

patients include weight loss, diarrhea, rectal bleeding and

abdominal pain (6). Additionally, IBD patients frequently

experience extraintestinal manifestations (EIMs) involving various

organs, including ocular, cutaneous, hepatic, biliary, and

hematologic complications (7). Arthritis is the most prevalent

EIM, affecting up to 40% of IBD patients, with a higher

occurrence in CD compared to UC (8).

The coexistence of AS and IBD is prevalent, with research

indicating that the incidence of IBD in AS patients ranges from 6%

to 14%, and the risk of developing AS in IBD patients is

approximately 3.7% to 4.5% (9, 10). A study conducted in

Germany reported that 5% to 10% of AS cases are linked to IBD,

and a greater proportion of AS patients displayed subclinical

intestinal inflammation (11). AS patients bear a persistent risk of

developing IBD throughout their lives, and this risk rises as the

disease duration prolongs (12). Both AS and IBD are chronic

recurrent conditions that significantly impact the quality of life

for affected individuals (13, 14).

Cell death is a physiological process essential for the regulation

of biological development and internal environmental stability. It

encompasses various mechanisms, including apoptosis, necroptosis,

pyroptosis, ferroptosis, NETosis, as well as cell death processes
02
associated with autophagy and non-programmed necrosis (15–17).

Recent researches have indicated a connection between IBD and AS

with various types of cell death (18, 19). However, there has been

limited exploration of the relationship between various forms of cell

death and the occurrence of these two diseases. According to a

recent study, it was found that cells expressing elevated SLC7A11

levels can prevent ferroptosis when glucose is scarce by absorbing

cystine through SLC7A11-mediated mechanisms. However, this

process may potentially result in a distinct form of cell death

known as disulfidptosis (20).

To gain a more profound insight into the regulatory

mechanisms of the genes related to disulfidptosis in patients with

AS and IBD. This study applies bioinformatics techniques and

experimental validation to investigate the shared regulatory

mechanisms of disulfidptosis-related genes in both of these

conditions, offering new targets and prospects for the treatment

of the diseases.
2 Materials and methods

2.1 Data source

The GSE25101, GSE75214, GSE73754, GSE102133 and

GSE16879 datasets were sourced from the GEO database

(Supplementary Data 1). The GSE25101 dataset (GPL6947)

includes the RNA-seq data of whole blood from 16 control

samples and 16 AS samples. The GSE75214 dataset (GPL6244)

includes the RNA-seq data of intestinal mucosal biopsies tissue

from 11 control samples and 51 CD samples. The GSE75214 dataset

(GPL6244) also includes the RNA-seq data of intestinal mucosal

biopsies tissue from 11 control samples and 74 UC samples. The

GSE73754 dataset (GPL10558) includes whole blood samples from

52 AS and 20 control samples. The GSE102133 dataset (GPL6244)

includes the RNA-seq data of ileal mucosa tissue from 65 CD

samples and 12 control samples. The GSE16879 dataset (GPL570)

includes the RNA-seq data of colonic mucosal biopsy tissue from 24

UC samples and 6 control samples. Of these, the GSE25101 and
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GSE75214 datasets were utilized as the training cohorts and the

GSE73754, GSE102133 and GSE16879 datasets were utilized as the

validation cohorts. Then, 4 disulfidptosis genes (SLC7A11, SLC3A2,

RPN1 and NCKAP1) were obtained from previous report (20). The

available GWAS summary statistics correlated with AS, UC and CD

was derived from the GWAS meta-analysis of The Genotype-Tissue

Expression (GTEx) Consortium (gtexportal.org).
2.2 Identification of differentially
expressed genes

DEGs1 (AS vs control), DEGs2 (CD vs control) and DEGs3

(UC vs control) were selected in two training cohorts by the limma

package (v 3.54.0) (21) with P value < 0.05 and |log2FC| > 0.25,

respectively. The results of the differential analysis were visually

represented using volcano maps and heatmaps. The volcano maps

and heatmaps were generated by the ggplot2 package (v 3.4.1) (22)

and pheatmap package (v 1.0.12), respectively.
2.3 Identification and functional
enrichment of differentially expressed
disulfidptosis-associated genes

The GSVA package (v 1.46.0) (23) was utilized to estimate

disulfidptosis scores for each of the three disease samples using the

ssGSEA algorithm, and the patient samples were categorized into

high and low-score groups with the median score serving as the

threshold for classification. DAGs1 (AS-high-disulfidptosis scores

vs AS-low-disulfidptosis scores), DAGs2 (CD-high-disulfidptosis

scores vs CD-low-disulfidptosis scores) and DAGs3 (UC-high-

disulfidptosis scores vs UC-low-disulfidptosis scores) were

selected using the limma package (v 3.54.0) (21) with P value <

0.05 and |log2FC| > 0.25, respectively. The results of differential

analysis were depicted using both volcano plots and heatmaps. The

intersection of DAGs1 and DEGs1, DAGs2 and DEGs2, and

DAGs3 and DEGs3 was taken to obtain DE-DAGs1, DE-DAGs2

and DE-DAGs3 respectively. The DE-DAGs were filtered by

overlapping DE-DAGs1, DE-DAGs2 and DE-DAGs3. Gene

Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes

(KEGG) enrichment analyses of DE-DAGs were implemented by

the clusterProfiler package (v 4.7.1) (24). Enrichment analysis

outcomes were regarded as statistically significant if the adjusted

p-value was less than 0.05.
2.4 Machine learning screening of
candidate feature genes

In our study, XGBoost analysis was conducted on the basis of

DE-DAGs to acquire XGBoost-feature genes1 (AS), XGBoost-

feature genes2 (CD) and XGBoost-feature genes3 (UC) by glmnet

package (v 4.1-4). In the meantime, Random Forest (RF) algorithm

was created out on the basis of DE-DAGs to acquire RF-feature
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genes1 (AS), RF-feature genes2 (CD) and RF-feature genes3 (UC).

The Gini coefficient of DE-DAGs was computed using the RF

algorithm, and the genes before the significant decrease in the Gini

coefficient were selected as RF-feature genes. Lastly, SVM-RFE

analysis was created out on the basis of DE-DAGs to acquire

SVM-RFE-feature genes1 (AS), SVM-RFE-feature genes2 (CD)

and SVM-RFE-feature genes3 (UC), respectively. Then, the AS-

candidate-feature genes were filtered via overlapping XGBoost-

feature genes1, RF-feature genes1 and SVM-RFE-feature genes1;

the CD-candidate-feature genes were filtered via overlapping

XGBoost-feature genes2, RF-feature genes2 and SVM-RFE-feature

genes2; the UC-candidate-feature genes were filtered via

overlapping XGBoost-feature genes3, RF-feature genes3 and

SVM-RFE-feature genes3.
2.5 Selection and verification of
feature genes

To explore the ability of candidate feature genes to distinguish

between control and disease (AS, CD and UC) groups, their

expression levels between disease and control groups were

compared and receiver operating characteristic (ROC) curves

were plotted for these genes in both the training and the

validation cohort. The expression analysis results were presented

by box plots. The area under the curve (AUC) values of ROC curves

were computed using the pROC package (v1.18.0) (25). The genes

with consistent expression trends and significant differences

between groups with AUC values exceeding 0.7 in both the

training and validation cohorts were screened as feature genes

(AS, CD, and UC) for subsequent analysis.
2.6 Construction of the nomogram

To predict the risk of AS, CD, and UC, nomograms were

constructed based on feature genes for AS, CD, and UC. Next,

calibration curve and decision curve analysis (DCA) curves were

plotted to judge the performance of the nomogram.
2.7 Single-gene set enrichment
analysis analysis

To investigate the impact of the expression of co-feature genes

on pathways in the three disease groups, single-gene GSEA analysis

was performed. The co-feature genes were screened by overlapping

AS-feature genes, CD-feature genes, and UC-feature genes. Then,

the correlation of co-feature genes to all other genes in AS-, CD-,

and UC-related datasets, and all the genes were sorted according to

the correlation from high to low. The ranked genes were taken as

the gene set to be tested, and the KEGG signaling pathway was

taken as the pre-defined gene set to detect its enrichment in the gene

set via clusterProfiler package (v 4.4.4) (24). The top 5 results for

KEGG significance were visualized separately.
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2.8 Screening for co-feature genes and
immune-infiltration analysis

The proportion of 22 immune cell subtypes was computed

separately for each sample by the CIBERSORT algorithm (26) in the

GSE25101 and GSE75214 cohorts. The difference in the proportion

of immune cells (filter out immune cells whose cell abundance was 0

in more than 75% of the samples) infiltrating between disease and

control groups was compared using the Wilcoxon method.

Meanwhile, the correlation analysis was performed between

immune cells and co-feature genes.
2.9 Construction of TF-mRNA-
miRNA network

To obtain the regulatory factors of co-feature genes, we carried

out a TF-mRNA-miRNA network. In this study, miRNet database

was employed to predict the miRNAs that potentially target the co-

feature genes. The TFs of co-feature genes were retrieved using the

NetworkAnalyst database. Lastly, the network was visualized using

Cytoscape software (v3.9.0) (27).
2.10 Functional validation of the co-
feature genes

To validate the expression of co-feature genes, 13 normal

controls, 8 AS patients, 12 UC patients, and 2 CD patients were

enrolled in this study. The 1984 New York Diagnostic Criteria served

as the principle for diagnosing AS (28). The diagnosis of IBD with its

2 main sub-forms (CD and UC), is based on clinical, endoscopic,

radiologic, and histologic criteria (29). Our study followed the ethical

guidelines outlined in the Helsinki Declaration and received ethical

approvals from the research committees of both the First Affiliated

Hospital of Zhengzhou University (2021-KY-0246-001) and the First

Affiliated Hospital of Chongqing Medical University (No. 2009-

201008). Peripheral blood mononuclear cells (PBMCs) were

collected from the participants’ blood and used for RNA extraction.

RT-PCR were conducted to assess the mRNA expression of S100A12

and LILRA5. The amplification system and primer sequences used for

beta-actin, S100A12 and LILRA5 can be found in Tables 1 and 2,

respectively. Gene expression levels were determined using the 2-DDCt

method. GraphPad Prism 9.5 was employed for data visualization

and graph creation.
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2.11 Mendelian randomization analyses

MR was employed to detect the causal relationship between co-

feature gene expression levels and the diseases. Single-nucleotide

polymorphisms (SNPs) were defined as instrumental variables

(IVs). Gene data were sourced from publicly available Genome-

Wide Association Study (GWAS) datasets. These data of outcomes

were obtained from 10,619, 487,598, and 51,874 subjects of

European population, respectively (ID: ebi-a-GCST005529, ebi-a-

GCST90038684 and ieu-a-12). MR analysis was conducted using

the ‘Two Sample MR’ package, and Inverse variance weighted

(IVW) method was applied to assess the relationship between co-

feature gene levels (cause) and the diseases (effect). Finally,

additional sensitivity analysis was performed using MR-Egger.
3 Results

3.1 Screening of DEGs

In total, 1134 DEGs1 (573 upregulated genes, 561 downregulated

genes, Supplementary Table 1), 4629 DEGs2 (2421 upregulated

genes, 2208 downregulated genes) and 7529 DEGs3 (3668

upregulated genes, 3861 downregulated genes) were acquired

between disease and control samples (Figures 1A–F).
3.2 Functional annotation of DE-DAGs

To investigate the relationship between the three diseases and

disulfidptosis, the disulfidptosis score was computed and DAGs

were obtained. A total of 1466 DAGs1 (802 upregulated genes, 664

downregulated genes), 2133 DAGs2 (855 upregulated genes, 1278

downregulated genes) and 1139 DAGs3 (742 upregulated genes,

397 downregulated genes) were gained (Figures 2A–F;

Supplementary Table 2). After taking the intersections, 422 DE-

DAGs1, 1496 DE-DAGs2 and 1064 DE-DAGs3 were obtained

(Supplementary Table 3). Finally, 11 DE-DAGs (S100A12, TLR1,

SERPINB1, ACSL4, LY96, RRAGD, LILRA5, HECW2, ACSL1,

ANXA3, and NRG1) were screened (Supplementary Table 4). The

results of the enrichment analysis revealed that the DE-DAGs were

associated with 92 GO entries and 24 KEGG pathways. The GO
TABLE 1 Amplification system of RT-PCR.

Step Temperature Time Cycle

Step 1 95°C 30 sec 1

Step 2 95°C 5 sec
40

60°C 30 sec

Step 3 Dissociation
TABLE 2 Primer sequences used for beta-actin, S100A12 and LILRA5.

Gene Primer

Beta-actin Forward: 5′GGATGCAGAAGGAGATCACTG3′

Reverse: 5′CGATCCACACGGAGTACT3′

S100A12 Forward: 5′TGAAGAGCATCTGGAGGGAAT3′

Reverse: 5′GGTGTCAAAATGCCCCCTTCC3′

LILRA5 Forward: 5′AGCTGGTGGTGACAGGATTC3′

Reverse: 5′AACCTGTCGAATCTCAGCCG3′
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term annotation showed that intersecting genes were primarily

involved in processes such as fatty-acyl-CoA biosynthetic process,

cytokine production, etc. (Figures 3A, B; Supplementary Table 5).

KEGG enrichment results included ferroptosis, fatty acid

biosynthesis, etc. (Figures 3C, D; Supplementary Table 6).
3.3 Screening for three disease candidate
feature genes

Furthermore, we conducted gene screening using machine

learning algorithms. In total, 9 XGBoost-feature genes1 (LY96,

LILRA5, S100A12, NRG1, TLR1, HECW2, RRAGD, ACSL4, and

ACSL1), 8 XGBoost-feature genes2 (ACSL4, RRAGD, SERPINB1,

ANXA3, S100A12, LILRA5, TLR1, and ACSL1), 7 XGBoost-feature

genes3 (NRG1, S100A12, HECW2, SERPINB1, ACSL4, ANXA3, and

LILRA5) were mined (Figures 4A–C); 5 RF-feature genes1 (LY96,

S100A12, NRG1, LILRA5, and HECW2), 9 RF-feature genes2

(ACSL4, ANXA3, LILRA5, SERPINB1, ACSL1, LY96, TLR1,
Frontiers in Immunology 05
RRAGD, and S100A12), 7 RF-feature genes3 (S100A12, NRG1,

ACSL4, LILRA5, HECW2, ANXA3, and SERPINB1) were

uncovered (Figures 4D–I); 9 SVM-RFE-feature genes1 (S100A12,

LY96, HECW2, SERPINB1, ACSL4, NRG1, ANXA3, LILRA5, and

ACSL1), 6 SVM-RFE-feature genes2 (ACSL4, ANXA3, LILRA5,

S100A12, ACSL1, and LY96), 6 SVM-RFE-feature genes3

(S100A12, ACSL4, NRG1, LILRA5, HECW2, and ANXA3) were

acquired after screening (Figures 4J–L). Hence, a total of 5 AS-

candidate-feature genes (LY96, LILRA5, S100A12, NRG1, and

HECW2), 5 CD-candidate-feature genes (ACSL4, ANXA3,

S100A12, LILRA5, and ACSL1) and 6 UC-candidate-feature genes

(NRG1, S100A12, HECW2, ACSL4, ANXA3, and LILRA5) were

screened (Figures 5A–C).
3.4 Identification of feature genes

In order to further obtain diagnostically significant feature

genes, we performed expression analysis and painted the ROC
B

C D

E F

A

FIGURE 1

Identification of DEGs associated with AS, CD and UC. (A, B) The volcano plot and heatmap plot of DEGs identified in GSE25101 (AS, n=32,
p < 0.05); (C, D) The volcano plot and heatmap plot of DEGs identified in GSE75214 (CD, n=62, p < 0.05); (E, F) The volcano plot and heatmap plot
of DEGs identified in GSE75214 (UC, n=85, p < 0.05).
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curves. For the AS, the expression of LILRA5, S100A12, and

HECW2 was consistent and significantly different in the

GSE25101 and GES73754 datasets (Figures 6A, B). Combined

with the results of the ROC curves, 2 AS-feature genes (S100A12

and LILRA5) were finally obtained (Figures 6C, D). Likewise, a total

of 5 CD-feature genes (ACSL4, ANXA3, S100A12, LILRA5 and

ACSL1) and 4 UC-feature genes (NRG1, S100A12, HECW2, and

LILRA5) were obtained (Figures 6E–H, 7A–D).
3.5 Construction and evaluation
of nomogram

After screening the feature genes, the nomograms were created

to predict the likelihood of disease in patients with three diseases

(Figures 8A–C). The accuracy of the nomogram was relatively high,

which was validated by the calibration curve (Figures 8D–F). The

results of the DCA curve suggested higher returns for the models

(Figures 8G–I).
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3.6 GSEA analysis of co-feature genes

Single-gene GSEA was implemented to explore the enriched

regulatory pathways and molecular functions of each co-feature

genes. Firstly, two feature genes (S100A12 and LILRA5) were

obtained. In AS, LILRA5 low-expression group was mainly

enriched to KEGG terms such as adherens junction, antigen

processing and presentation, etc. (Figure 9A; Supplementary

Table 7); S100A12 high-expression group was primarily enriched

to KEGG terms such as oxidative phosphorylation, ribosome, etc.

(Figure 9B). In CD, LILRA5 and S100A12 high-expression group

were primarily enriched to KEGG pathways, including cytokine-

cytokine receptor interaction, etc., the low expression groups were

primarily enriched for drug metabolism cytochrome P450 etc.

(Figures 9C, D; Supplementary Table 8). In UC, LILRA5 and

S100A12 high-expression group were primarily enriched to

KEGG pathways, including cytokine-cytokine receptor

interaction, hematopoietic cell lineage, etc. (Figures 9E, F;

Supplementary Table 9).
B

C D

E F

A

FIGURE 2

Identification of DEGs associated with disulfidptosis involved in AS, CD and UC. (A, B) The volcano plot and heatmap plot of DAGs involved in AS
(p < 0.05); (C, D) The volcano plot and heatmap plot of DAGs involved in CD (p < 0.05); (E, F) The volcano plot and heatmap plot of DAGs involved
in UC (p < 0.05).
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3.7 Immune-related analyses of
co-feature genes

Through the results of single-gene GSEA we found that the co-

feature genes were related to immunity, and therefore immune

infiltration analysis was carried out. The bars showed the

proportion of the 22 immune cells in each sample in the three

diseases (Figures 10A–C). In total, one immune cell (M2

macrophages) was significantly different between the AS and

control groups (Figure 10D); Significant differences were observed

in the levels of 11 immune cell types (plasma cells, resting memory

CD4 T cell, M0 macrophages, neutrophils, etc.), when comparing

the CD and control groups (Figure 10E); Significant differences

were observed in the levels of 15 immune cells (effector memory

CD8 T cell, gamma delta T cell, neutrophils, etc.), when comparing

the UC and control groups (Figure 10F). The correlation analysis

indicated that S100A12 was strongly negatively association with

naive CD4 T cells, while it was strongly positively correlated with

monocytes in AS (Figure 10G); S100A12 was strongly negatively

correlated with CD8 T cell, while it was strongly positively relation

with M1 macrophages in CD (Figure 10H); LILRA5 was strongly

negatively correlated with CD8 T cell, while it was strongly

positively associated with neutrophils (Figure 10I).
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3.8 The TF-mRNA-miRNA network of
co-feature genes

Based on co-feature genes, we obtained 18 miRNAs (hsa-mir-

1225-3p, hsa-mir-1233-3p, hsa-mir-4740-3p, hsa-mir-6086 and

so on) and 18 TFs (NFKB1, CEBPB, HINFP, CREB1, YY1, etc.). A

total of 38 nodes (2 co-feature, 18 miRNAs and 18 TFs) and 41

edges were included in the TF-mRNA-miRNA network

(Figure 11). Among them, LILRA5 obtained more miRNAs

and TFs.
3.9 The expression levels of S100A12
and LILRA5

Because of the significant associations of S100A12 and LILRA5

with AS and IBD, the mRNA expression levels of the two genes in

PBMCs extracted from 34 participants (12 healthy controls, 8 AS

patients, 12 UC patients and 2 CD patients) were tested. Significant

associations were shown between S100A12 mRNA expression with

AS and IBD (P < 0.05, Figure 12A; Supplementary Table 10). No

correlation was detected between LILRA5 mRNA expression with

AS and IBD (P > 0.05, Figure 12B).
B

C

D

A

FIGURE 3

Identification and functional analysis of co-DE-DAGs associated with AS, CD and UC. (A) Bubble plot of GO functional enrichment; (B) Network
Diagram of GO functional enrichment; (C) Bubble plot of KEGG functional enrichment; (D) Network Diagram of KEGG functional enrichment.
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3.10 Causal association between S100A12
and AS/UC/CD

Causal relationship between S100A12 and the diseases (AS, UC

and CD) was further explored in the study. Using the IVWmethod,

we found a significant correlation between the S100A12 gene and

the risk of developing UC and CD, with an OR of 1.000157 (95%

confidence interval = 1.000087-1.000227, p = 1.10E-05) in UC and

an odds ratio (OR) of 1.003 (95% confidence interval = 1.000-1.005,

p = 0.006) in CD (See Supplementary Table 1, Figures 13A, B, 14A,
Frontiers in Immunology 08
B). The funnel plot of causal effects appeared approximately

symmetrical (Figures 13C, 14C) and the intercept of the MR

Egger regression did not indicate horizontal pleiotropy, further

confirming the absence of bias in the causal effect. As shown in

Figures 13D and 14D, we conducted systematic MR analysis on the

remaining SNPs after removing each SNP. The results remained

consistent, indicating that the causal relationships were significant

for all SNPs. This also suggests that there are no dominant SNPs at

the S100A12 gene level associated with UC and CD, validating the

previous MR results (Supplementary Tables 11, 12).
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FIGURE 4

Machine learning screening of candidate feature genes involved in AS, CD and UC. (A–C) 9 XGBoost-feature genes1 (AS), 8 XGBoost-feature genes2
(CD) and 7 XGBoost-feature genes3 (UC) on the basis of DE-DAGs; (D–I) 5 RF-feature genes 1 (AS), 9 RF-feature genes 2 (CD) and 7 RF-feature
genes 3 (UC) on the basis of DE-DAGs; (J–L) 9 SVM-RFE-feature genes1 (AS), 6 SVM-RFE-feature genes 2 (CD) and 6 SVM-RFE-feature genes 3 (UC)
on the basis of DE-DAGs.
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4 Discussion

The association between AS and IBD has been extensively

documented. The coexistence of both conditions can result in

severe symptoms and unfavorable outcomes, often leading to

misdiagnosis and inadequate treatment (8). Recently identified as

a novel form of cell death, disulfidptosis is triggered by the

accumulation of excessive cysteine within cells, leading to

disulfide stress (20). This phenomenon is typically triggered

during glucose starvation, potentially contributing to the

organism’s internal environmental equilibrium (30). Considering

its discovery, we have undertaken this study to explore its potential

association with both diseases and its potential role in influencing

the co-occurrence of these two conditions. After analyzing both the

training and validation sets of the three diseases, we identified the

following feature genes: 2 AS-feature genes (S100A12 and LILRA5);

5 CD-feature genes (ACSL4, ANXA3, S100A12, LILRA5, and

ACSL1); and 4 UC-feature genes (NRG1, S100A12, HECW2, and

LILRA5). Subsequently, a total of two co-feature disulfidptosis-

related genes, namely S100A12 and LILRA5, were obtained. Further

functional experiments validated the significant correlation between

S100A12 mRNA expression levels with AS and IBD. In addition, by

MR analysis, we identified a causal relationship of S100A12 in the

development of IBD (UC and CD).

The long-chain acyl-CoA synthetase family (ACSL), located on

the outer mitochondrial membrane and endoplasmic reticulum,

catalyzes the conversion of fatty acids to acyl-CoA. Serving as

intermediates in the lipid metabolic pathway, acyl-CoAs

participate in various biological processes, including the

maintenance of cell membrane structure, energy metabolism, and

lipid metabolism (31). Among the key subtypes, ACSL1 and ACSL4

have been identified as crucial players. ACSL1 was recently found to

be a promoter of iron accumulation, while ACSL4 was considered

instrumental in integrating polyunsaturated fatty acids (PUFA) into

phospholipids, a significant event in iron accumulation (31, 32).

Iron accumulation was a form of non-apoptotic cell death driven by

lipid peroxidation, with lipid metabolism being a major metabolic

change during the process. In patients with IBD, encompassing CD
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and UC, the inflammatory process led to damage of the intestinal

mucosa and ulcer formation. This inflammatory state might

potentially result in local iron accumulation, initiating oxidative

stress and activating the iron accumulation pathway (33). Although

the specific mechanisms by which ACSL1 and ACSL4 participate in

and regulate iron accumulation have not been fully understood,

several studies suggested that they may serve as therapeutic targets

for inhibiting iron accumulation (31, 32). While the relationships of

these genes with disulfidptosis have not been extensively studied,

the aforementioned researches have suggested their potential

associations with other cell death pathways. Through

bioinformatics approaches, we have, for the first time, confirmed

their relevance to the disulfidptosis process in CD, but further

research and validation are needed to reveal the molecular

mechanisms at play.

Neuregulin 1 (NRG1) was initially identified as a 44-kD

glycoprotein that interacted with the NEU/ERBB2 receptor

tyrosine kinase, enhancing phosphorylation on its tyrosine

residues (34). The interaction between NRG1 and ErbB4 is

believed to play a role in the pathological mechanisms of

schizophrenia. Positive outcomes for anxiety disorders and

schizophrenia patients have been suggested through targeted

interventions affecting mutations in NRG1 and ERBB4 (35).

Additionally, under stress conditions, including viral infection,

cytotoxic agents, and oxidative stress, the activation of NRG-1/

ERBB signaling has been shown to protect myocardial cells from

apoptosis. Although research on intestinal diseases is limited,

genetic variations located at the NRG1 have been found to

increase the risk of congenital megacolon. Annexin A3 (ANAX3)

is a member of the annexin family, a calcium-dependent

phospholipid-binding protein family that plays a role in

regulating cell growth and signaling pathways (36). The function

of this protein is to inhibit A2 phospholipase and cleave inositol 1,2-

cyclic phosphate to form inositol 1-phosphate (37). Recent studies

showed that the ANXA3-specific expression was significantly

higher in AS patients than in normal controls, with a significant

statistical difference. Moreover, ANXA3 was found positively

correlated with neutrophils, and the expression of neutrophils in
B CA

FIGURE 5

(A) 5 AS-candidate-feature genes, (B) 5 CD-candidate-feature genes and (C) 5 UC-candidate-feature genes were filtered via overlapping XGBoost-
feature genes, RF-feature genes and SVM-RFE-feature genes.
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FIGURE 6

Verification of feature genes between control and disease (AS, CD and UC) groups. (A, B) 5 AS-candidate-feature genes expression levels between
AS and control groups (training & validation sets); (C, D) Plotted ROC curves for 5 AS-candidate-feature genes in AS group (training & validation
sets); (E, F) 5 CD-candidate-feature genes expression level differences between CD and controls (training & validation sets); (G, H) 5 UC-candidate
feature genes expression level differences between UC and controls (training & validation sets). ns, no significance; *, **, ***, and **** indicate the
significance of gene expression differences, the more asterisks there are, the greater the significance of the difference; *: p < 0.05; **: p < 0.01; ***:
p < 0.001; ****: p < 0.0001.
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AS patients was significantly higher than in the control group (38).

While the research on NRG1 and ANAX3 in autoimmune diseases

is limited, our findings have identified them as IBD-feature genes

linked to disulfidptosis. Recognizing the intricate association

between apoptosis, neutrophils, and the onset of IBD, we believe

further investigation into the mechanisms is necessary.
Frontiers in Immunology 11
Leukocyte Immunoglobulin-Like Receptor Subfamily A

Member 5 (LILRA5) is a gene that encodes a protein belonging to

the immunoglobulin superfamily (39). It is a type I transmembrane

receptor that is expressed on various immune cells, including

macrophages, monocytes and dendritic cells. Stimulating this

receptor on the surface of monocytes has been demonstrated to
B

C D

A

FIGURE 7

The AUC values of candidate feature genes involved in AS, CD and UC. (A, B) Plotted ROC curves for 5 CD-candidate-feature genes in CD groups
(training & validation sets); (C, D) Plotted ROC curves for 6 UC-candidate-feature genes in UC groups (training & validation sets).
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induce calcium flux and the secretion of several proinflammatory

cytokines. This suggests that this protein plays a role in initiating

innate immune responses (40). In a study involving RA patients,

LILRA5 was found to be linked with the Immunoreceptor Tyrosine-

based Activation Motif (ITAM) of the Fc receptor common g chain
(39, 41). Activation of LILRA5 on monocyte surfaces led to elevated

phosphorylation of tyrosine kinases, which in turn led to the early

and specific production of pro-inflammatory cytokines such as

TNF-a, IL-6 and IL-1b, followed by a delayed induction of IL-10.

Taken together, these findings imply that LILRA5 could potentially

play a role in the onset of RA (39). The expression of LILRA5

mRNA and protein was observed to be notably affected by both

macrophage differentiation and the in vitro treatment of monocytes
Frontiers in Immunology 12
with cytokines (TNF-a, IFN-g and IL-10). This indicates that the

activation of the LILRA5 receptor is tightly controlled by cytokines

that are produced when it is stimulated. In our study, LILRA5 was

identified as a diagnostic co-feature gene of AS, CD and UC, and

although the RT-PCR results failed to detect an association between

LILRA5 mRNA and IBD and AS, aforementioned research allowed

us to speculate on the potential mechanisms of LILRA5 in these two

conditions. Considering the well-established roles of IFN-g, IL-10,
and TNF-a in the pathogenesis of AS, CD and UC (42), LILRA5

may accelerate the development of these conditions due to the

activation of cytokine pathways. It is essential to conduct further

investigations with larger sample sizes to explore this relationship

more thoroughly.
B
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A

FIGURE 8

Nomogram model construction and evaluation of candidate feature genes involved in AS, CD and UC. (A–C) the nomogram model construction on
the basis of feature genes to predict the likelihood of disease in patients with AS, CD and UC (p>0.05; MAE<0.05); (D–F) Calibration curve showed the
accuracy of the nomogram was relatively high and validated the model performance of AS, CD and UC; (G–I) DCA curve suggested net profit of the
constructed model is better than the default method.
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S100A12 is an alarm signal, selectively targeting granulocytes and

binding to RAGE and TLR4 receptors (43). Research suggests that the

activation of NF-kB through RAGE dependency can lead to the

secretion of pro-inflammatory cytokines, ultimately culminating in

the recruitment of monocytes (44, 45). In mouse models, S100A12

has been shown to play a role in the recruitment of inflammatory

cells. Furthermore, it has been observed to be over-expressed in

inflamed tissues of individuals with various conditions, such as IBD,

Psoriatic arthropathies (PsA), Juvenile Idiopathic Arthritis (JIA), and

Rheumatoid Arthritis (RA) (46–48). Notably, S100A12 is a

dependable biomarker for both IBD and systemic-onset JIA (49).

As JIA and AS are believed to be autoimmune disorders the immune

system mistakenly attacks the body’s own tissues, leading to

inflammation and harm to the joints, it suggests that S100A12

might have a significant role in the development of AS and IBD.
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Our study validated S100A12 as a diagnostically co-feature gene of

AS, CD and UC, and the significant associations were also validated

between S100A12 mRNA expression and diseases. In both AS and

IBD patients, there was a significant upregulation of S100A12mRNA

expression compared to healthy individuals. We proceeded with MR

analysis, uncovering a causal link between S100A12 and the onset of

UC and CD. In line with the gene transcription findings, it becomes

evident that the upregulation of S100A12 significantly contributes to

the pathogenesis of both UC and CD.

Single-gene GSEA was employed to investigate the enriched

regulatory pathways and molecular functions of S100A12 and

LILRA5. In AS, the LILRA5 low-expression group was primarily

enriched to adherens junction, antigen processing and presentation,

while S100A12 exhibited high levels of enrichment in oxidative

phosphorylation. Among them, aberrant antigen processing and
B
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A

FIGURE 9

GSEA analysis of each co-feature genes. (A, B) Single-gene GSEA of S100A12 and LILRA5 on pathways in AS; (C, D) Single-gene GSEA of S100A12
and LILRA5 on pathways in CD; (E, F) Single-gene GSEA of S100A12 and LILRA5 on pathways in UC.
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presentation has been recognized as key pathogenic factors leading

to immune activation in AS (50). Recent research indicated that

oxidative phosphorylation might be considered as a common

pathogenic factor for both AS and dementia (51). The adherens
Frontiers in Immunology 14
junction plays a crucial role in establishing physical connections

between cells and governing cell-cell contacts, which are essential

for the morphogenesis and remodeling of tissues and organs (52).

There is a lack of documented research investigating the connection
B
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FIGURE 10

Screening for co-feature genes and immune-infiltration analysis. (A–C) The proportion of the 22 immune cells in each sample in AS, CD and UC;
(D–F) The difference in the proportion of immune cells infiltrating between the three diseases and control group (Wilcoxon method); ns, no
significance; *, **, ***, and **** indicate the significance of gene expression differences, the more asterisks there are, the greater the significance of
the difference; *: p < 0.05; **: p < 0.01; ***: p < 0.001; ****: p < 0.0001. (G–I) The correlation analysis between the proportion of immune cells
infiltrating and co-feature genes in AS, CD and UC.
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between adherens junctions and AS. However, abnormal cadherin

expression in immune cells can lead to modified interactions among

immune cells, contributing to the onset of autoimmune diseases

(53). Our research showed that LILRA5 and S100A12 high-

expression groups were mainly enriched to cytokine-cytokine

receptor interaction both in CD and UC. The engagement

between cytokines and their respective receptors initiates

downstream signaling pathways, resulting in the release of pro-

inflammatory molecules and the recruitment of immune cells to the

inflamed intestinal tissues (54, 55). This persistent inflammation

can lead to tissue damage, disrupting the integrity of the gut barrier

and contributing to the development of IBD, including CD and

UC (56).

Immune-related analyses of co-feature genes were also carried

out in our study. In AS, there was a significant negative correlation
Frontiers in Immunology 15
between S100A12 and naive CD4 T cells, while a strong positive

correlation was observed between S100A12 and monocytes. Studies

have shown that individuals with AS may exhibit increased

activation of monocytes (57). Monocytes in individuals with AS

may have an altered cytokine production profile, favoring the

release of pro-inflammatory cytokines like TNF-a and IL-1b,
which are known to be key drivers of inflammation in AS (58).

The decrease in naive CD4 T cells has shown to be related to an

increase in the differentiation of these cells into various effector T

cell subsets, such as Th1 and Th17 cells. Studies have suggested an

increase in pro-inflammatory Th1 and Th17 CD4 T cell

proportions in individuals with AS (59). In CD group, there was

a negative correlation between S100A12 and CD8 T cells, whereas a

strong positive correlation was observed between S100A12 and M1

macrophages. There has been evidence of increased activation of
FIGURE 11

TF-mRNA-miRNA network of S100A12 and LILRA5.
BA

FIGURE 12

The mRNA expression differences of S100A12 (A) and LILRA5 (B) between healthy controls and diseases. S100A12 mRNA expression was significantly
up regulated in the IBD and AS patients compared with healthy individuals. ns, no significance.
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M1 macrophages in the inflamed intestinal tissues of CD patients

(60). In individuals with IBD, there is evidence of increased

activation of CD8 T cells in the intestinal mucosa. These activated

CD8 T cells can produce pro-inflammatory cytokines and

chemokines, contributing to the inflammation of the disease (61).

Furthermore, LILRA5 was strongly negatively correlated with CD8

T cell, while it was strongly positively associated with neutrophils in

UC group. Neutrophils have long been acknowledged as crucial

components of the immune system, contributing to both innate and

adaptive immunity. Recent studies have uncovered significant

phenotypic and functional irregularities in neutrophils across

various systemic autoimmune disorders (62).

In the present study, the feature genes associated with

disulfidptosis shared among AS, CD and UC were uncovered, and

machine learning and functional enrichment analysis were utilized

to identified co-feature genes. To make the results more

comprehensive and reliable, we therefore performed functional

validation experiments and confirmed the significant role of

S100A12 in AS and IBD. Additionally, by MR analysis, we

identified a significant causal relationship between S100A12 and

IBD. There are still several limitations in this study. Firstly, because
Frontiers in Immunology 16
of the inclusion of multiple diseases and the relative rarity of

patients in the active disease phase, we could only to collect a

limited number of patient samples for functional studies, therefore,

it is crucial to conduct further research with a larger sample size.

Secondly, as disulfidptosis is a recent research advancement,

additional mechanistic studies are necessary to confirm its

relevance to the three conditions, constructing mouse or cell

models for functional experiments could further validate the

reliability and accuracy of our results. Thirdly, the RT-PCR data

for LILRA5 did not exhibit significant correlation, potentially

influenced by factors such as sample size, qRT-PCR reaction

conditions, and tissue heterogeneity. Considering the mentioned

drawbacks, we aim to enhance this study by conducting more

comprehensive mechanistic investigations in the future.
5 Conclusions

Our study, for the first time, identified two co-feature genes

(S100A12 and LILRA5) associated with disulfidptosis in AS, CD,

and UC. Investigating the functions of these genes and pathways
B
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FIGURE 13

The significant outcomes of MR effect regarding S100A12 on UC. (A) Scatterplot: The x-axis represents the effect of SNPs on exposure, and the y-
axis represents the effect of SNPs on the outcome. A slope greater than 0 indicates that the exposure factor is an adverse factor for the outcome.
(B) Forest plot: A value greater than 0 implies a positive association between the SNP position and the outcome, while a value less than 0 suggests a
negative association. (C) Funnel plot. (D) Leave-one-out: Leave-one-out analysis did not result in the exclusion of any instrumental variable, and the
model’s effects remained statistically significant without significant deviations.
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in modulating autoimmunity holds promise for future

therapeutic breakthroughs in the management of AS, CD,

and UC.
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