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Abstract. In this article, we put forward an efficient method on the foundation of
a few reproducing kernel spaces(RK-spaces) and the collocation method to seek the
solution of delay parabolic partial differential equations(PDEs) with singular pertur-
bation. The approximated solution g̃n(s, t) to the equations is formulated and proved
the exact solution is uniformly convergent by the solution. Furthermore, the partial
differentiation of the approximated solution is also proved the partial derivatives of
the exact solution is uniformly convergent by the solution. Meanwhile, we show that
the accuracy of our method is in the order of T/n where T is the final time and n
is the number of spatial (and time) discretization in the domain of interests. Three
numerical examples are put forward to demonstrate the effectiveness of our presented
scheme.

Keywords: delay parabolic equation, reproducing kernel method, collocation method,

numerical solution.

AMS Subject Classification: 35K20; 46E23; 65L60.

1 Introduction

The solutions of delay parabolic PDEs with singular perturbation at a limiting
value of the singular parameter are different in character from the solutions of
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the general problem. This kind of PDEs are frequently used in varied forms
of real-world applications, such as in the modeling of the human pupil-light
reflex [22], population dynamics in mathematical biology, medicine and oth-
ers [1, 29,32,40].

The PDEs with singular perturbation have been broadly studied by many
scholars, including least squares method in [2], finite difference scheme in [4,26],
Galerkin finite element method in [19], domain decomposition scheme in [20],
reproducing kernel method(RKM) in [12] and others [6,27,30]. There are many
references on numerical methods and numerical stability for delay differential
equations, such as [5, 15, 17] to just list a few. Furthermore, finite difference
schemes for PDEs with a time delay effect and a singular parameter are studied
in 1D [3,7, 14,18] and in 2D [9] recently.

In this article, the following type of the singularly perturbed delay parabolic
PDEs are considered by us

∂f(s, t)

∂t
− ε

∂2f(s, t)

∂s2
+ a(s, t)f(s, t) = F (s, t)− b(s, t)f(s, t− τ), (s, t) ∈ Ω,

f(0, t) = 0, f(1, t) = 0, t ∈ A1,

f(s, t) = Ψ(s, t), (s, t) ∈ A2, (1.1)

where a(s, t) ≥ 0, b(s, t) ≥ β ≥ 0, 0 < ε ≤ 1, τ > 0 and Ω, A1, A2 are
[0, 1]× [0, T ], [0, T ], [−τ, 0]× [0, 1], respectively. The forcing terms, F (s, t) and
Ψ(s, t) are sufficiently smooth bounded functions, such that Equation (1.1) has
a unique solution.

A robust finite difference method for the singularly perturbed delay para-
bolic PDEs are investigated by the authors in [3]. The focus of our paper,
Equation (1.1) is a special case of model introduced in [3]. Thus, the theorems
of uniqueness of the solutions to Equation (1.1) can be found in [3]. Addition-
ally, we propose a RKM and collocation method to approximate the solutions
to Equation (1.1) that does not require a separate time discretization scheme.
Thus, it is more robust in terms of the discretization of temporal space. The
RKM has attracted the interest of many authors. Xu and Lin [38] applied the
RKM for solving the delay fractional differential equations. The RKM pro-
posed by Geng and Cui [11] can be used to solve presented the RKM to solve
the nonlocal fractional boundary value problems, in addition to the partial
integro-differential equation, multi-point boundary value problems and so on,
see [8,10,13,16,21,23,24,25,28,31,33,34,35,36,37,39,41] for more details. The
aim of this article is to seek the approximate solutions of Equation (1.1) by
the RKM and collocation method. Significantly, the Smith orthogonal process
is averted and the computational time is saved by this method. Furthermore,
the trouble cased by the delay term is dealt with in the established RK-space.
Thus, it does not cost any computational expenses. Moreover, we can see that
problem (1.1) has boundary layer behavior, it is important to obtain a proper
approximation of the solutions for values where the boundary layer behavior is
very severe. Therefore, we apply adaptive RKM to overcome this problem.

Structure of this thesis: a brief introduction is made with several applica-
ble RK-spaces by us and its corresponding reproducing kernel function (RK-
function) in Section 2. Section 3 presents a specific RKM and gives the approxi-
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mated solution to Equation (1.1). Furthermore, astringency and error estimate
of the numerical scheme are presented in Section 4. In Section 5, numerical
examples are discussed to verify the effectiveness of the proposed method.

2 Preliminaries

In order to analyze the solution of Equation (1.1), we will present several RK-
spaces in this section.

Definition 1. Let W1[0, 1] = {f(x) | f(x) be an absolutely continuous real-
valued function in [0, 1], f ′(x) ∈ L2[0, 1]}. In W1[0, 1], the ⟨·, ·⟩ and ∥ · ∥ are
characterized by

⟨f, g⟩W1
= f(0)g(0) +

∫ 1

0

f ′(x)g′(x)dx, ∀ f, g ∈ W1[0, 1],

∥f∥W1
=

√
⟨f, f⟩W1

, ∀ f ∈ W1[0, 1],

respectively.

Lemma 1. The functional space W1[0, 1] is a RK-space and its RK-function
K1(x, y) has the following form

K1(x, y) =

{
x+ 1, x ≤ y,
y + 1, x > y.

Proof. Similar to [8]. ⊓⊔

Definition 2. Let W2[0, T ] = {f(x) | f ′(x) be an absolutely continuous real-
valued function in [0, T ], f ′′(x) ∈ L2[0, T ], f(0) = 0}. The ⟨·, ·⟩ and ∥ · ∥ are
characterized by

⟨f, g⟩W2
= f ′(0)g′(0) +

∫ T

0

f ′′(x)g′′(x)dx, ∀ f, g ∈ W2[0, T ],

∥f∥W2 =
√

⟨f, f⟩W2 , ∀ f ∈ W2[0, T ],

respectively.

Lemma 2. The functional space W2[0, T ] is a RK-space and its RK-function
K2(x, y) has the following form

K2(x, y) =


−1

6
x3 + 1

2x
2y + xy, x ≤ y,

−1

6
y3 + 1

2y
2x+ xy, x > y.

Proof. Similar to [8]. ⊓⊔

Math. Model. Anal., 28(3):469–486, 2023.
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Definition 3. Let

W
′

2[−τ, T ] = {f(x) | −τ ≤ t ≤ 0, u(0) = 0, 0 ≤ t ≤ T, f(x) ∈ W2[0, T ]}.

The ⟨·, ·⟩ and ∥ · ∥ are characterized by

⟨f, g⟩W′
2
= f

′

+(0)g
′

+(0) +

∫ T

0

f ′′(x)g′′(x)dx, ∀ f, g ∈ W
′

2[−τ, T ],

∥f∥W′
2
=

√
⟨f, f⟩W′

2
, ∀ f ∈ W

′

2[−τ, T ],

respectively.

Lemma 3. The space W′

2[−τ, T ] is a RK-space and its RK-function K ′
2(x, y)

has the following form

K
′

2(x, y) =

{
K2(x, y), 0 ≤ x, y ≤ T,
0, others.

Proof. Similar to [8]. ⊓⊔

Definition 4. Let W3[0, 1] = {f(x) | f ′′(x) be an absolutely continuous real
value function in [0, 1], f ′′′(x) ∈ L2[0, 1], f(0) = f(1) = 0}. The ⟨·, ·⟩ and ∥ · ∥
are characterized by

⟨f, g⟩W3 =

2∑
i=1

f i(0)vi(0) +

∫ 1

0

f ′′′(x)g′′′(x)dx, ∀ f, g ∈ W3[0, 1],

∥f∥W3
=

√
⟨f, f⟩W3

, ∀ f ∈ W3[0, 1],

respectively.

Lemma 4. The functional space W3[0, 1] is a RK-space and its RK-function
K3(x, y) has the following form

K3(x, y)=



− 1

18720
(x− 1)y(156y4 + 6x2(y4 − 5y3 + 10y2 + 30y + 120)

−4x3(y4−5y3+10y2+30y+120)+x4(y4−5y3+10y2 + 30y + 120)

+12x(3y4 − 15y3 − 100y2 − 300y + 360)), x ≤ y,

− 1

18720
(y−1)x(30xy(y3−4y2+6y−120)+10x2y(y3−4y2

+6y−120) + 120y(y3 − 4y2 + 6y + 36)− 5x3y(y3 − 4y2

+6y + 36) + x4(y4 − 4y3 + 6y2 + 36y + 156)), x > y.

Definition 5. Assume Ω = [0, 1]× [−τ, T ]. Let W(3,2)(Ω) = {f(s, t) | f ′′′

sst be

an absolutely continuous real-valued function in Ω, f
(5)
ssstt ∈ L2(Ω), f(s, 0) =

f(0, t) = f(1, t) = 0}. The ⟨·, ·⟩ and ∥ · ∥ are characterized by

⟨f, g⟩W(3,2)
=

2∑
i=1

∫ T

0

∂2

∂t2
∂i

∂si
f(0, t)

∂2

∂t2
∂i

∂si
g(0, t)dt+ ⟨ ∂

∂t
f(s, 0),

∂

∂t
g(s, 0)⟩W3

+

∫ T

0

∫
Ω

∂3

∂s3
∂2

∂t2
f(s, t)

∂3

∂s3
∂2

∂t2
g(s, t)dsdt, ∀ f, g ∈ W3[0, 1]
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and
∥f∥W3

=
√
⟨f, f⟩W3

, ∀ f ∈ W3[0, 1],

respectively.

Lemma 5. The functional space W(3,2)(Ω) is a RK-space. Moreover,

W(3,2)(Ω) = W3[0, 1]⊗W′

2[−τ, T ] and its RK-function K(3,2)(s̄, t̄, s, t) has the
following form

K(3,2)(s̄, t̄, s, t) = K3(s̄, s)K
′

2(t̄, t), ∀ (s̄, s), (t̄, t) ∈ Ω.

Definition 6. Let Ω1 = [0, 1] × [0, T ]. Let W(1,1)(Ω1) = {f(s, t) | f(s, t) be
an absolutely continuous real-valued function in Ω1, fxt ∈ L2[Ω1]}. Then,
W(1,1)(Ω1) is a RK-space and its RK-function K(1,1)(s̄, t̄, s, t) has the following
form

K(1,1)(s̄, t̄, s, t) = K1(s̄, s)K1(t̄, t), ∀ (s̄, s), (t̄, t) ∈ Ω.

3 The RKM and collocation method for Equation (1.1)

The initial conditions of Equation (1.1) are brought into the RK-spaces, we
must homogenize Equation (1.1). Let g(s, t) = f(s, t)− ω(s, t), where

ω(s, t) =

{
Φ(s, t), − τ ≤ t ≤ 0,

Φ(s, 0), 0 ≤ t ≤ T.

Then, we can acquire a homogeneous system from Equation (1.1) as follows
g(s, t) = 0, τ ≤ t ≤ 0,

∂g

∂t
−ε∂2g

∂s2 +ag + bg(s, t−τ) = F1(s, t), 0 ≤ x ≤ 1, 0 ≤ t ≤ T,

g(0, t) = 0, g(1, t) = 0, 0 ≤ t ≤ T,

(3.1)

where

F1(s, t)=


ε
∂2

∂s2
Φ(s, 0)−a(s, t)Φ(s, 0)−b(s, t)Φ(s, t−τ)+F (s, t), 0 ≤ t ≤ τ,

ε
∂2

∂s2
Φ(s, 0)−a(s, t)Φ(s, 0)−b(s, t)Φ(s, 0)+F (s, t), t > τ.

Let B : W(3,2)(Ω) → W(1,1)(Ω1) be a differential operator such that

Bg =
∂g

∂t
− ε

∂2g

∂s2
+ ag + bg(s, t− τ), for g(s, t) ∈ W(3,2)(Ω).

Then, Equation (3.1) can be converted into the following form g(s, t) = 0, − τ ≤ t ≤ 0,
Bg(s, t) = F1(s, t), 0 ≤ x ≤ 1, 0 ≤ t ≤ T,
g(0, t) = g(1, t) = 0, 0 ≤ t ≤ T.

(3.2)

The operator B will be proved which is linear differential operator with
boundedness in the remainder of this section. Then we will form a basis for
the RK-space W(3,2)(Ω) fabricated in the previous section. Therefore, we will
approximate the solution of Equation (3.2) by a function sequence inW(3,2)(Ω).

Math. Model. Anal., 28(3):469–486, 2023.
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Lemma 6. B : W(3,2)(Ω) → W(1,1)(Ω1) is a bounded linear operator.

Proof. It is obvious that B is a linear operator. We can obtain the bounded-
ness if the following relation holds that

∥Bg(s, t)∥2W(1,1)
≤ M∥g∥2W(3,2), M > 0.

Utilization of the reproducing property of RK-function K(3,2)(s̄, t̄, s, t), we can
get

g(s, t) = ⟨g(·, ·),K(3,2)(s, t, ·, ·)⟩(3,2),
∂i
si∂

j
tjBg(s, t) = ⟨g(·, ·), ∂i

si∂
j
tjBK(3,2)(s, t, ·, ·)⟩(3,2), i, j = 0, 1.

Hence, we utilize ∂i
si∂

j
tjBg(s, t) and the continuity of K(3,2)(s, t, ·, ·) as well as

the Schwarz inequality, one can be written

∂i
si∂

j
tjBg(s, t) |= ⟨g(·, ·), ∂i

si∂
j
tjBK(3,2)(s, t, ·, ·)⟩W(3,2)

|

≤ ∥g∥W(3,2)
∥∂i

si∂
j
tjBK(3,2)(s, t, ·, ·)∥W(3,2)

≤ Mi,j∥g∥W(3,2)
.

Make use of the inner product and the norm of W(3,2)(Ω), we can get that

∥Bg(s, t)∥2W(1,1)
= ⟨Bg(s, t),Bg(s, t)⟩W(1,1)

=

∫ T

0

(
∂

∂t
Bg(0, t)

)2

dt

+ ⟨Bg(s, 0),Bg(0, t)⟩W1
+

∫∫
Ω1

(
∂

∂s

∂

∂t
Bg(s, t)

)2

dsdt=

∫ T

0

(
∂

∂t
Bg(0, t)

)2

dt

+ (Bg(0, 0))2+

∫ 1

0

(
∂

∂s
Bg(s, 0)

)2

ds+

∫∫
Ω1

(
∂

∂s

∂

∂t
Bg(s, t))2dsdt

≤
∫ T

0

M2
0 ∥g∥2W(3,2)

dt+M2
1 ∥g∥2W(3,2)

+

∫ 1

0

M2
2 ∥g∥2W(3,2)

ds+

∫∫
Ω

M2
3 ∥g∥2W(3,2)

dsdt

= (M2
0 +M2

1 +M2
2T +M2

3T )∥g∥2W(3,2)
.

That is,

∥Bg(s, t)∥2W1
≤ M∥g∥2W(3,2)

,

where M = M2
0 +M2

1 +M2
2T +M2

3T . Thus, the linear operator B is bounded
as well. ⊓⊔

Lemma 7. Let

Φi(s, t) = K(1,1)(si, ti, s, t), Ψi(s, t) = B∗Φi(s, t),

as suppose that {(si, ti)}∞i=1 is dense on Ω, where B∗ is the conjugate operator
of B and K(1,1) is the RK-function of W(1,1)(Ω1). Then,

Ψi(s, t) = BK(3,2)(si, ti, s, t).
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Proof. Owing to the properties of the RK-function, we can get that

Ψi(s, t) = ⟨B∗K(1,1)(si, ti, ·, ·),K(3,2)(s, t, ·, ·)⟩W(3,2)

= ⟨K(1,1)(si, ti, ·, ·),BK(3,2)(s, t, ·, ·)⟩W(1,1)
= BK(3,2)(si, ti, s, t).

This concludes the Lemma. ⊓⊔

Remark 1. By the Lemma above, we can get that

Ψi(s, t) =
∂K

′

2(ti, t)

∂ti
K3(si, s)− ε

∂2K3(si, s)

∂si2
K

′

2(ti, t)

+a(s, t)K3(si, s)K
′

2(ti, t) + b(s, t)K3(si, s)K
′

2(ti, t− τ).

Notice that the RK-functions K
′

2 and K3 are symmetric, it follows that

⟨Ψi(s, t),Ψj(s, t)⟩ = (BΨi(s, t))(sj , tj)

=
∂Ψi(s, t)

∂tj
− ε

∂2Ψi(s, t)

∂xj
2

+ a(s, t)Ψi(s, t) + b(s, t)Ψi(s, t− τ).

Now we are ready to define a basis for the RK-space W(3,2)(Ω).

Theorem 1. The sequence {Ψi(s, t)}∞i=1 is linearly independent in W(3,2)(Ω)
as suppose that {(si, ti)}∞i=1 is dense on Ω.

Proof. If we can obtain that {Ψi(s, t)}mi=1 is linearly independent for any m ≥
1, this conclusion is obvious. Actually, if {ci}mi=1 satisfies that

m∑
i=1

ciΨi(s, t) = 0,

taking αk(s, t) such that

αk(xl, tl) =

{
1, l = k,

0, l ̸= k,

where αk(s, t) ∈ W(3,2)(Ω), for each l = 1, 2, . . . ,m, then we can obtain that

0 = ⟨αk(s, t),
m∑
i=1

ciΨi(s, t)⟩W(3,2)
=

m∑
i=1

ci⟨αk(s, t),Ψi(s, t)⟩W(3,2)

=
m∑
i=1

ciαk(si, ti) = ck, k = 1, 2, . . . ,m.

Hence, we can arrive at a conclusion that {Ψi(s, t)}mi=1 is linearly independent
for all m ≥ 0. Therefore, {Ψi(s, t)}∞i=1 is linearly independent in W(3,2)(Ω).
⊓⊔

The main theorem in this paper is given below. This theorem provides an
approximated solution to Equation (3.2) in the RK-space W(3,2)(Ω).

Math. Model. Anal., 28(3):469–486, 2023.
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Theorem 2. Let Sn = span{Ψ1(s, t),Ψ2(s, t), · · · ,Ψn(s, t)} and
Pn : W(3,2)(Ω) → Sn be the orthogonal projection operator of W(3,2)(Ω) onto
Sn. If g(s, t) is the solution of Equation (3.2), then, g̃n(s, t) = Png satisfies

⟨g̃n,Ψi⟩ = F1(si, ti), i = 1, 2, . . . , n. (3.3)

Furthermore,

g̃n(s, t) =
n∑

j=1

ajΨj(s, t) (3.4)

is an approximate solution, where a1, a2, . . . , an are undetermined constants,
which can be determined by

⟨Ψ1,Ψ1⟩ ⟨Ψ2,Ψ1⟩ · · · ⟨Ψn,Ψ1⟩
⟨Ψ1,Ψ2⟩ ⟨Ψ2,Ψ2⟩ · · · ⟨Ψn,Ψ2⟩

...
...

...
...

⟨Ψ1,Ψn⟩ ⟨Ψ2,Ψn⟩ · · · ⟨Ψn,Ψn⟩



a1
a2
...
an

 =


F1(s1, t1)
F1(s2, t2)

...
F1(sn, tn)

 .

Proof. Owing to the properties of the RK-function and the self-conjugation
of the operator Pn, it can be shown that

⟨Png,Ψi⟩ = ⟨g, PnΨi⟩ Ψ self-conjugate

= ⟨g,Ψi⟩ Ψ orthogonal projection

= ⟨g,B∗Φi⟩ Definition of Ψi

= ⟨Bg,Φi⟩ = Bg(si, ti) = F1(si, ti).

To gain the approximated solution g̃n in the form of Equation (3.4), we
substitute Equation (3.4) into Equation (3.3). Through collocation process, we
have that

n∑
j=1

aj⟨Ψj(s, t),Ψi(s, t)⟩ = F1(s, t), ∀ i = 1, . . . , n. (3.5)

Rewrite the above system in a matrix form, we have that

Ga = F1, (3.6)

where

G =


⟨Ψ1,Ψ1⟩ ⟨Ψ2,Ψ1⟩ · · · ⟨Ψn,Ψ1⟩
⟨Ψ1,Ψ2⟩ ⟨Ψ2,Ψ2⟩ · · · ⟨Ψn,Ψ2⟩

...
...

...
...

⟨Ψ1,Ψn⟩ ⟨Ψ2,Ψn⟩ · · · ⟨Ψn,Ψn⟩

 ,

a =
(
a1a2 · · · an

)T
, F1 =

(
F1(s1, t1)F1(s2, t2) · · ·F1(sn, tn)

)T
.

Then, we have that a = G−1F1 as required. ⊓⊔
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Algorithm:

Step 1. Calculating the RK-functions K(1,1)(s̄, t̄, s, t) and K(3,2)(s̄, t̄, s, t);

Step 2. Structuring a bounded linear operator B;

Step 3. Structuring Ψi and the projection operator Pn;

Step 4. Setting up Equation (3.5) in the light of the projection operator,
and expressed as matrix form;

Step 5. Finding the corresponding coefficients in Equation (3.6).

Consider the domain Ω = [0, 1] × [0, T ]. Instead of using fixed collocation
points on the domain Ω, we realize that an adaptive collocation points cross
domain during the layer are critical to certain situations. We observe that
there is a connection between the points that had a larger error of fn and the
points that had larger errors of F . This motivates us to use the error of F as
an indicator for adding points.

In practice, we first select a set A of n points uniformly across the domain.
By applying our proposed RKM to obtain an approximating solution. We then
choose a different set B of 2n points randomly as test points. We calculate
Bfn − F at the above 2n points of B and pick n points that give the highest
error in predicting F . We add this set of points to previous collocation points
and using the RKM again to obtain an approximation f2n. This procedure is
important, as it not only prevents us from losing the accuracy of the solution
across the entire domain but also helps us to focus more points on the boundary
layer.

4 Convergence and error estimation

Theorem 3. As defined in Equation (3.4), g(s, t) is uniformly convergent by
g̃n(s, t).

Proof. Obviously, ∥g̃n − g∥ → 0 holds as n → ∞. Like that, g̃n(x) is the
approximate solution of Equation (3.2). By the following inequalities

∥g̃n(s, t)− g(s, t)∥ = ∥⟨g̃n − g,K(3,2)⟩∥ ≤ ∥g̃n − g∥∥K(3,2)∥, ∥K(3,2)∥ ≤ M

since K(3,2) is continuous on [0, 1], where M is a real number and M > 0, we
can draw a conclusion that g(s, t) is uniformly convergent by g̃n(s, t) on [0, 1].
⊓⊔

Theorem 4. The partial derivatives of the exact solution ∂i
ti∂

j
sjg(s, t) are uni-

formly convergent by ∂i
ti∂

j
sj g̃n(s, t), whenever i = 0, 1 and j = 0, 1, 2, where

∂i
ti∂

j
sj g̃n(s, t) are the partial derivatives of the numerical solution g̃n(s, t).
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Proof. SinceW(3,2) is a Hilbert space, obviously, ∥g̃n−g∥ → 0 holds as n → ∞.
Again, since

∥∂i
ti∂

j
sjg(s, t)− ∂i

ti∂
j
sj g̃n(s, t)∥

= ∥⟨g(y, s)− g̃n(y, s), ∂
i
ti∂

j
sjBK(3,2)(s, t, y, s)⟩∥W(3,2)

≤ ∥g − g̃n∥W(3,2)
∥∂i

ti∂
j
sjBK(3,2)(s, t, y, s)∥W(3,2)

≤ Mi,j∥g − g̃n∥W(3,2)
,

hence ∂i
ti∂

j
sj g̃n(s, t) converges uniformly to ∂i

ti∂
j
sjg(s, t). ⊓⊔

Next, we will give an error analysis on the approximated solution g̃n to the
true solution g for Equation (3.2).

Theorem 5. Let a dense subset of the domain Ω be S = {(s1, t1), (s2, t2), . . .}.
Then,

Bg(sj , tj) = Bg̃n(sj , tj), (sj , tj) ∈ S, j ≤ n.

Proof. Owing to the properties of the RK-function and the self-conjugation
of the operator Pn, we can get that

Bg̃n(sj , tj) = ⟨g̃n(·, ·),BK(3,2)(sj , tj , ·, ·)⟩
= ⟨g̃n(·, ·),Ψj(·, ·)⟩ Definition of Ψ

= ⟨Png(·, ·),Ψj(·, ·)⟩ Pn self-conjugation

= ⟨g(·, ·), PnΨj(·, ·)⟩ = ⟨g(·, ·),Ψj(·, ·)⟩
= ⟨g(·, ·),BK(3,2)(sj , tj , ·, ·)⟩ = B⟨g(·, ·),K(3,2)(sj , tj , ·, ·)⟩ = Bg(sj , tj).

⊓⊔

The error estimation of the approximated solution, through the following the-
orem, constructed by our RK-space W(3,2)(Ω), g̃n.

Theorem 6. Recall T is the final time of interests, n is the sum of points in
the domain Ω. Then,

∥g(s, t)− g̃n(s, t)∥ = O (T/n) .

Proof. For ∀ n ∈ N and (s, t) ∈ Ω, take (sj , tj) ∈ S, j ≤ n, where S =
{(s1, t1), (s2, t2), . . .}, such that | s− sj |≤ 1/n and | t− tj |≤ T/n. By Equa-
tion (5), we can arrive at

Bg̃n(s, t)−Bg(s, t) = Bg̃n(s, t)−Bg̃n(sj , tj)− (Bg(s, t)−Bg̃n(sj , tj))

= ⟨g̃n(·, ·),BK(3,2)(s, t, ·, ·)−BK(3,2)(sj , tj , ·, ·)⟩
− ⟨g(·, ·),BK(3,2)(s, t, ·, ·)−BK(3,2)(sj , tj , ·, ·)⟩
= ⟨g̃n(·, ·)− g(·, ·),BK(3,2)(s, t, ·, ·)−BK(3,2)(sj , tj , ·, ·)⟩.

Furthermore, based on the reversible property of the operator B, we have that

g̃n(s, t)−g(s, t)=⟨g̃n−v,B−1(BK(3,2)(s, t, ·, ·)−BK(3,2)(sj , tj , ·, ·))⟩
≤ ∥B−1∥∥g̃n(s, t)− g(s, t)∥∥BK(3,2)(s, t, ·, ·)−BK(3,2)(sj , tj , ·, ·)∥.
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From the defintion of K(3,2)(s, t, s̄, t̄), it can be seen that BK(3,2)(s, t, ·, ·)
is differentiable with respect to (s, t). Utilizing the mean value theorem with
regard to s and t, respectively, we can get that

BK(3,2)(si, ti, s, t)−BK(3,2)(sj , tj , ·, ·)

=
∂

∂ξ
BKξ,η(·, ·)(s− sj) +

∂

∂η
BKξ,η(·, ·)(t− tj).

Thus,

g̃n(s, t)−g(s, t) ≤ ∥B−1∥∥g̃n(s, t)−g(s, t)∥s−sj∥
∂

∂ξ
BKξ,η(·, ·)∥+∥B−1∥∥g̃n(s, t)

− g(s, t)∥t− tj∥
∂

∂η
BKξ,η(·, ·)∥ ≤ 1

n
∥B−1∥∥g̃n(s, t)− g(s, t)∥∥ ∂

∂ξ
BKξ,η(·, ·)∥

+
T

n
∥B−1∥∥g̃n(s, t)− g(s, t)∥∥ ∂

∂η
BKξ,η(·, ·)∥.

Since both ∥ ∂
∂ξBKξ,η(·, ·)∥ and ∥ ∂

∂ηBKξ,η(·, ·)∥ are bounded, and ∥g̃n(s, t) −
g(s, t)∥ → 0, we conclude that

g(s, t)− g̃n(s, t) = O (T/n) .

⊓⊔

5 Numerical results

In this section, we present some numerical experiments to verify our theoretical
findings. We operate our programs in MATHEMATICA 13.0. In all examples,
we first use a uniform meshes of n points on Ω. We compute the error en =
fn − f in different type norms. For convenience, we denote

∥en∥20 :=

∫
Ω

(f(s, t)−fn(s, t))
2
dsdt, ∥en∥21,t :=

∫
Ω

(∂tf(s, t)−∂tfn(s, t))
2
dsdt,

∥en∥21,s :=
∫
Ω

(∂sf(s, t)− ∂sfn(s, t))
2
dsdt,

∥en∥22,s :=
∫
Ω

(∂ssf(s, t)− ∂ssfn(s, t))
2
dsdt.

Example 1. Let us examine the singularly perturbed delay differential equation
as follows:

f(s, t) = Ψ(s, t), (s, t) ∈ [0, 1]× [−τ, 0],

∂f(s, t)

∂t
− ε

∂2f(s, t)

∂s2
= −e−0.05f(s, t−τ)+F (s, t), (s, t) ∈ [0, 1]× (0, 2],

f(0, t) = 0, f(1, t) = 0, t ∈ [0, 2],

where τ = 0.05, and the source function is provided by

F (s, t) = e−(t+s/
√
ε) (−s(s− 1) + 2(2s− 1)

√
ε− 2ε

)
.
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The initial data is given by Ψ(s, t) which can be calculated from the exact
solution

f(s, t) = s(s− 1)e−(t+s/
√
ε).

The profiles of the approximate solution and the absolute errors when n =
64 with ϵ = 2−2 are shown in Figure 1.

a) The approximating solution, b) The absolute error

Figure 1. Example 1 – a) the approximating solution and b) the absolute error with
ϵ = 2−2 and τ = 0.05.

Table 1 is listed the absolute errors regarding different values of the singu-
larity perturbed parameter ϵ and different values of spatial points n.

Table 1. Errors and convergence orders of adaptive RKM for Example 1.

ϵ n ∥en∥0 order |en|1,t order |en|1,s order |en|2,s order

2−2

16 1.49E-3 6.85E-3 4.83E-3 2.47E-2
64 3.36E-4 2.14 2.25E-3 1.60 1.23E-3 1.97 6.25E-3 1.98
256 7.74E-5 2.13 6.39E-4 1.84 3.01E-4 1.99 1.57E-3 1.99
1024 1.85E-5 2.05 1.68E-4 1.93 7.51E-5 1.99 3.93E-4 2.00

2−4

16 1.55E-3 7.22E-3 8.39E-3 8.61E-2
64 3.40E-4 2.19 1.80E-3 2.00 1.48E-3 2.50 2.07E-2 2.06
256 7.65E-5 2.15 4.55E-4 1.98 2.83E-3 2.38 4.97E-3 2.05
1024 1.82E-5 2.08 1.14E-4 1.99 6.84E-4 2.04 1.21E-3 2.04

2−6

16 5.39E-3 2.01E-2 2.79E-2 2.65E-1
64 1.26E-3 2.07 5.19E-3 1.95 7.21E-3 1.95 7.01E-2 1.91
256 3.04E-4 2.05 1.30E-3 2.00 1.83E-3 1.98 1.81E-2 1.95
1024 7.51E-5 2.02 3.24E-4 1.99 4.58E-4 2.00 4.62E-3 1.97

It can be shown clearly that the proposed numerical method converges
with orders of O(h2) under L2 norm, H1 seminorm and H2 seminorm, which
is consistent with traditional RKM. The computational accuracy is decreasing
when ϵ is getting smaller. Figure 2 shows the the profiles of the approximated
solution and the absolute errors when n = 256 with ϵ = 2−8. As we can see
from Figure 2, the proposed algorithm can handle ϵ = 2−8 with fairly accurate
approximations.



A Reproducing Kernel Method . . . 481

a) The approximating solution, b) The absolute error

Figure 2. Example 1 – a) the approximating solution and b) the absolute error with
ϵ = 2−8 and τ = 0.05.

Example 2. Let us examine the equation as follows:

f(s, t) = Ψ(s, t), (s, t) ∈ [−τ, 0]× [0, 1],

∂f(s, t)

∂t
− ε

∂2f(s, t)

∂s2
= −2f(s, t−τ)+F (s, t), (s, t) ∈ [0, 1]× (0, 2],

f(0, t) = 0, f(1, t) = 0, t ∈ [0, 2],

where τ = 0.01, and the source function is provided by

F (s, t)=e−(t+s/
√
ε) (2s(s− 1)2(−1 + e0.01)+2(3s2−4s+1)

√
ε−2(s−2)ε

)
.

The initial data is given by Ψ(s, t) which can be calculated from the exact
solution

f(s, t) = s(s− 1)2e−(t+s/
√
ε).

Table 2. Errors and convergence orders of adaptive RKM for Example 2.

ϵ n ∥en∥0 order |en|1,t order |en|1,s order |en|2,s order

2−2

16 9.87E-3 2.81E-2 3.32E-2 1.08E-1
64 2.82E-3 1.68 7.98E-3 1.81 9.45E-3 1.81 3.13E-2 1.79
256 7.95E-4 1.83 2.07E-3 1.94 2.51E-3 1.92 8.65E-3 1.86
1024 2.05E-4 1.95 5.22E-4 1.99 6.54E-4 1.93 2.23E-3 1.96

2−4

16 2.16E-2 8.01E-2 8.64E-2 5.51E-1
64 6.26E-3 1.79 2.25E-2 1.83 2.53E-2 1.77 1.58E-1 1.80
256 1.64E-3 1.93 6.02E-3 1.90 6.90E-3 1.88 4.29E-2 1.88
1024 4.21E-4 1.97 1.55E-3 1.96 1.85E-3 1.90 1.12E-2 1.94

2−6

16 5.24E-2 2.62E-1 2.59E-1 2.38E-0
64 1.49E-2 1.82 7.34E-2 1.84 7.10E-2 1.87 6.74E-1 1.82
256 4.05E-3 1.88 1.98E-2 1.89 1.89E-2 1.91 1.79E-1 1.91
1024 1.04E-3 1.96 5.15E-3 1.94 4.83E-3 1.97 4.71E-2 1.93

Listed in Table 2 are numerical results of Example 2 obtained by our pro-
posed RKM. By applying the adaptive strategies, we obtain a similar conver-
gence results as Example 1. The profiles of the approximated solution and
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the absolute errors when with ϵ = 2−2(n = 64) and ϵ = 2−8(n = 256) are
shown Figures 3 and 4, respectively. As ϵ gets smaller, the accuracy remains
at the similar order of magnitudes. Nevertheless, our adaptive RKM improve
the accuracy compared with the traditional RKM.

a) The approximating solution, b) The absolute error

Figure 3. Example 2 – a) the approximating solution and b) the absolute error with
ϵ = 2−2 and τ = 0.01.

a) The approximating solution, b) The absolute error

Figure 4. Example 2 – a) the approximating solution and b) the absolute error with 2−8

and τ = 0.01.

Example 3. Let us compare the equation in [3] as follows:

f(s, t) = Ψ(s, t), (s, t) ∈ [−τ, 0]× [0, 1],

∂f(s, t)

∂t
− ε

∂2f(s, t)

∂s2
= −2e−1f(s, t−1)+F (s, t), (s, t) ∈ [0, 1]× (0, 2],

f(0, t) = e−1, f(1, t) = e−(t+1/
√
ε), t ∈ [0, 2].

The initial date is given by Ψ(s, t) which can be calculated from the exact
solution

f(s, t) = e−(t+s/
√
ε).

Listed in Table 3 are numerical results of Example 3 obtained by our proposed
RKM and the finite difference methods in [3]. From the Table, we can see that
our RKM method is litte bit more accurate than the method in [3]. This also
shows that the RKM proposed in this paper is meaningful.
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Table 3. The comparision of maximum errors for Example 3.

ϵ n parameter-robust FDMs in [3] our proposed RKM

2−6

64 2.158E-3 1.335E-3
256 5.138E-4 3.179E-4
1024 1.268E-4 7.948E-5

2−8

64 2.628E-3 1.594E-3
256 5.449E-4 3.785E-4
1024 1.287E-4 9.463E-5

2−14

64 4.718E-3 2.947E-3
256 8.212E-4 7.017E-4
1024 1.576E-4 1.754E-4

6 Conclusions

In this post, a significant method was proposed by us that using RK-spaces and
collocation method to solve delay parabolic PDEs with singular perturbation.
We defined three basic RK-spaces with their inner product and norms. Fur-
thermore, an approximated solution to the delay parabolic PDEs with singular
perturbation were approximated by the RK-space W(3,2)(Ω). In addition, we
verified that the exact solution is uniformly convergent by the approximated
solution. Error estimates for the presented numerical algorithm were estab-
lished.

All the discussions and proofs are based on [0, 1] in one dimensional space.
However, those results can be easily extended to other closed interval in R.
Furthermore, the absolute errors of the approximated solution is in the order of
T/n which can be understood as the time step size in our numerical algorithm.
Notice that we do not have any special time discretization in our algorithm. In
other words, the time domain is treated the same way as the spatial domain,
which is much easier than other traditional methods that use finite different
scheme for time discretization and another spatial discretization scheme.
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