182 research outputs found

    Utilization Of Ring Signatures To Construct Homomorphic Authenticators In ORUTA To Verify The Integrity of Shared Data

    Get PDF
    It is practiced for users to influence cloud storage services to contribute to data with others in a group as data sharing develop into a standard feature in most cloud storage offerings including Drop box, iCloud andGoogle Drive. The reliability of data in cloud storage though is matterto scepticism and scrutiny as data stored in the cloud can without problems be lost or corrupted due to the foreseeable hardware/ software failures and human errors. To formulate this substance even worse cloud service providers may be unenthusiastic to inform users about these data errors in order to retain the reputation of their services and shun losing profits. Consequently the veracity of cloud data should be confirmed before any data utilization such as search or computation over cloud data

    Aldo-keto reductase-1 (AKR1) protect cellular enzymes from salt stress by detoxifying reactive cytotoxic compounds

    Get PDF
    Cytotoxic compounds like reactive carbonyl compounds such as methylglyoxal (MG), melandialdehyde (MDA), besides the ROS accumulate significantly at higher levels under salinity stress conditions and affect lipids and proteins that inhibit plant growth and productivity. The detoxification of these cytotoxic compounds by overexpression of NADPH-dependent Aldo-ketoreductase (AKR1) enzyme enhances the salinity stress tolerance in tobacco. The PsAKR1 overexpression plants showed higher survival and chlorophyll content and reduced MDA, H2O2, and MG levels under NaCl stress. The transgenic plants showed reduced levels of Na+ levels in both root and shoot due to reduced reactive carbonyl compounds (RCCs) and showed enhanced membrane stability resulted in higher root growth and biomass. The increased levels of antioxidant glutathione and enhanced activity of superoxide dismutase (SOD), ascorbate peroxidase (APX) and glutathione reductase (GR) suggest AKR1 could protect these enzymes from the RCC induced protein carbonylation by detoxification process. The transgenics also showed higher activity of delta 1-pyrroline-5- carboxylate synthase (P5CS) enzyme resulted in increasedproline levels to maintain osmotic homeostasis. The results demonstrates that the AKR1 protects proteins or enzymes that are involved in scavenging of cytotoxic compounds by detoxifying RCCs generated under salinity stress. © 2017 Elsevier Masson SA

    Biomass, Biochemical Composition and Decomposition Behavior of Roots and Shoots of Major Rainfed Crops

    Get PDF
    Not AvailableA Study was conducted during 2012-14 to quantify root and shoot biomass of 2 cultivars each of 8 rainfed crops (sorghum, greengram, sunflower, maize, castor, pigeonpea, cowpea and horsegram), to determine their biochemical composition and to examine their decomposition behavior in soil. Root biomass of all the crops and cultivars was lower than the respective shoot biomass. Roots accounted for 12.07% (Horsegram, CRHG 4) to 35.26% (Maize, DHM 117) of the total plant biomass. Root biomass (averaged over cultivars) varied widely with crops, ranging from as low as 5.24 g/plant (Horsegram) to as high as 158.23 g/plant (Pigeonpea) and was in the order pigeonpea > sorghum > maize > castor > sunflower > cowpea > greengram > horsegram. Shoot:root ratios ranged from 1.84 (Maize, DHM 117) to 7.29 (Horsegram, CRHG 4). There were marked differences in shoot:root ratios among crops and even cultivars within crops. Biochemical analysis revealed that cell wall was the dominant fraction of the plant tissue accounting for up to 3/4th of the tissue. Regardless of crop or cultivar, roots had lower soluble cell contents and higher cell wall contents than shoots. Averaged across crops and cultivars, lignin content of roots was 13.76% as against 8.38% for shoots. Crops differed significantly in the lignin content of their roots, which ranged from 8.25% in maize to 19.15% in pigeonpea. The dicots with taproot systems (castor, sunflower, greengram, cowpea, horsegram, pigeonpea) had higher lignin content than the monocots with fibrous root systems (maize, sorghum). Lignin/N ratios of roots were 2-3 times higher than those of shoots. Patterns of carbon mineralization of roots and shoots were exponential in nature, being faster in the initial stages and slowing down over time. Regardless of crops and cultivars, roots exhibited distinctly slower carbon mineralization than corresponding shoots. Averaged across crops and cultivars, per cent C mineralized in 120 days was 37.35% in roots as against 50.22% in shoots. Lignin content (r = -0.684 * * ) and lignin/N ratio (r = -0.636 * * ) had a highly significant negative relationship with % C mineralized.Not Availabl

    Peasant farmer behavior and cereal technologies: stochastic programming analysis in Niger

    Get PDF
    Peasant farmers in Sahelian West Africa adjust to rainfall uncertainties in the agricultural season by making decisions sequentially as a function of the evolving rainfall patterns. Understanding such flexibilities in farmer decision-making is central to technology introduction. This paper determines how sequential decision making under weather uncertainty affects the adoption and farm-level effects of cereal technologies in Niger. The study also draws policy implications for a price floor to arrest the substantial fall in cereal prices in good rainfall years when farmers have more grains to sell. The methodology used is discrete stochastic programming. The paper shows that the ability of peasant farmers to adapt cropping and resource management strategies to the rainfall patterns is the basis for their survival in this high-risk environment. Model results show that by (a) carrying a portfolio mix of varieties of varying maturities, and (b) making sequential decisions based upon rainfall expectations, farmers can adapt to the production uncertainties. Breeding programmes should therefore be diversified to develop not only early-maturing cultivars, but also improved intermediate and long-season varietie

    A Model for the Development of the Rhizobial and Arbuscular Mycorrhizal Symbioses in Legumes and Its Use to Understand the Roles of Ethylene in the Establishment of these two Symbioses

    Get PDF
    We propose a model depicting the development of nodulation and arbuscular mycorrhizae. Both processes are dissected into many steps, using Pisum sativum L. nodulation mutants as a guideline. For nodulation, we distinguish two main developmental programs, one epidermal and one cortical. Whereas Nod factors alone affect the cortical program, bacteria are required to trigger the epidermal events. We propose that the two programs of the rhizobial symbiosis evolved separately and that, over time, they came to function together. The distinction between these two programs does not exist for arbuscular mycorrhizae development despite events occurring in both root tissues. Mutations that affect both symbioses are restricted to the epidermal program. We propose here sites of action and potential roles for ethylene during the formation of the two symbioses with a specific hypothesis for nodule organogenesis. Assuming the epidermis does not make ethylene, the microsymbionts probably first encounter a regulatory level of ethylene at the epidermis–outermost cortical cell layer interface. Depending on the hormone concentrations there, infection will either progress or be blocked. In the former case, ethylene affects the cortex cytoskeleton, allowing reorganization that facilitates infection; in the latter case, ethylene acts on several enzymes that interfere with infection thread growth, causing it to abort. Throughout this review, the difficulty of generalizing the roles of ethylene is emphasized and numerous examples are given to demonstrate the diversity that exists in plants

    Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: A systematic analysis for the Global Burden of Disease Study 2015

    Get PDF
    Background: The Global Burden of Diseases, Injuries, and Risk Factors Study 2015 provides an up-to-date synthesis of the evidence for risk factor exposure and the attributable burden of disease. By providing national and subnational assessments spanning the past 25 years, this study can inform debates on the importance of addressing risks in context. Methods: We used the comparative risk assessment framework developed for previous iterations of the Global Burden of Disease Study to estimate attributable deaths, disability-adjusted life-years (DALYs), and trends in exposure by age group, sex, year, and geography for 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks from 1990 to 2015. This study included 388 risk-outcome pairs that met World Cancer Research Fund-defined criteria for convincing or probable evidence. We extracted relative risk and exposure estimates from randomised controlled trials, cohorts, pooled cohorts, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. We developed a metric that allows comparisons of exposure across risk factors—the summary exposure value. Using the counterfactual scenario of theoretical minimum risk level, we estimated the portion of deaths and DALYs that could be attributed to a given risk. We decomposed trends in attributable burden into contributions from population growth, population age structure, risk exposure, and risk-deleted cause-specific DALY rates. We characterised risk exposure in relation to a Socio-demographic Index (SDI). Findings: Between 1990 and 2015, global exposure to unsafe sanitation, household air pollution, childhood underweight, childhood stunting, and smoking each decreased by more than 25%. Global exposure for several occupational risks, high body-mass index (BMI), and drug use increased by more than 25% over the same period. All risks jointly evaluated in 2015 accounted for 57·8% (95% CI 56·6–58·8) of global deaths and 41·2% (39·8–42·8) of DALYs. In 2015, the ten largest contributors to global DALYs among Level 3 risks were high systolic blood pressure (211·8 million [192·7 million to 231·1 million] global DALYs), smoking (148·6 million [134·2 million to 163·1 million]), high fasting plasma glucose (143·1 million [125·1 million to 163·5 million]), high BMI (120·1 million [83·8 million to 158·4 million]), childhood undernutrition (113·3 million [103·9 million to 123·4 million]), ambient particulate matter (103·1 million [90·8 million to 115·1 million]), high total cholesterol (88·7 million [74·6 million to 105·7 million]), household air pollution (85·6 million [66·7 million to 106·1 million]), alcohol use (85·0 million [77·2 million to 93·0 million]), and diets high in sodium (83·0 million [49·3 million to 127·5 million]). From 1990 to 2015, attributable DALYs declined for micronutrient deficiencies, childhood undernutrition, unsafe sanitation and water, and household air pollution; reductions in risk-deleted DALY rates rather than reductions in exposure drove these declines. Rising exposure contributed to notable increases in attributable DALYs from high BMI, high fasting plasma glucose, occupational carcinogens, and drug use. Environmental risks and childhood undernutrition declined steadily with SDI; low physical activity, high BMI, and high fasting plasma glucose increased with SDI. In 119 countries, metabolic risks, such as high BMI and fasting plasma glucose, contributed the most attributable DALYs in 2015. Regionally, smoking still ranked among the leading five risk factors for attributable DALYs in 109 countries; childhood underweight and unsafe sex remained primary drivers of early death and disability in much of sub-Saharan Africa. Interpretation: Declines in some key environmental risks have contributed to declines in critical infectious diseases. Some risks appear to be invariant to SDI. Increasing risks, including high BMI, high fasting plasma glucose, drug use, and some occupational exposures, contribute to rising burden from some conditions, but also provide opportunities for intervention. Some highly preventable risks, such as smoking, remain major causes of attributable DALYs, even as exposure is declining. Public policy makers need to pay attention to the risks that are increasingly major contributors to global burden. Funding: Bill & Melinda Gates Foundation

    Risk profiles and one-year outcomes of patients with newly diagnosed atrial fibrillation in India: Insights from the GARFIELD-AF Registry.

    Get PDF
    BACKGROUND: The Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF) is an ongoing prospective noninterventional registry, which is providing important information on the baseline characteristics, treatment patterns, and 1-year outcomes in patients with newly diagnosed non-valvular atrial fibrillation (NVAF). This report describes data from Indian patients recruited in this registry. METHODS AND RESULTS: A total of 52,014 patients with newly diagnosed AF were enrolled globally; of these, 1388 patients were recruited from 26 sites within India (2012-2016). In India, the mean age was 65.8 years at diagnosis of NVAF. Hypertension was the most prevalent risk factor for AF, present in 68.5% of patients from India and in 76.3% of patients globally (P < 0.001). Diabetes and coronary artery disease (CAD) were prevalent in 36.2% and 28.1% of patients as compared with global prevalence of 22.2% and 21.6%, respectively (P < 0.001 for both). Antiplatelet therapy was the most common antithrombotic treatment in India. With increasing stroke risk, however, patients were more likely to receive oral anticoagulant therapy [mainly vitamin K antagonist (VKA)], but average international normalized ratio (INR) was lower among Indian patients [median INR value 1.6 (interquartile range {IQR}: 1.3-2.3) versus 2.3 (IQR 1.8-2.8) (P < 0.001)]. Compared with other countries, patients from India had markedly higher rates of all-cause mortality [7.68 per 100 person-years (95% confidence interval 6.32-9.35) vs 4.34 (4.16-4.53), P < 0.0001], while rates of stroke/systemic embolism and major bleeding were lower after 1 year of follow-up. CONCLUSION: Compared to previously published registries from India, the GARFIELD-AF registry describes clinical profiles and outcomes in Indian patients with AF of a different etiology. The registry data show that compared to the rest of the world, Indian AF patients are younger in age and have more diabetes and CAD. Patients with a higher stroke risk are more likely to receive anticoagulation therapy with VKA but are underdosed compared with the global average in the GARFIELD-AF. CLINICAL TRIAL REGISTRATION-URL: http://www.clinicaltrials.gov. Unique identifier: NCT01090362

    Universal DNA methylation age across mammalian tissues

    Get PDF
    DATA AVAILABILITY STATEMENT : The individual-level data from the Mammalian Methylation Consortium can be accessed from several online locations. All data from the Mammalian Methylation Consortium are posted on Gene Expression Omnibus (complete dataset, GSE223748). Subsets of the datasets can also be downloaded from accession numbers GSE174758, GSE184211, GSE184213, GSE184215, GSE184216, GSE184218, GSE184220, GSE184221, GSE184224, GSE190660, GSE190661, GSE190662, GSE190663, GSE190664, GSE174544, GSE190665, GSE174767, GSE184222, GSE184223, GSE174777, GSE174778, GSE173330, GSE164127, GSE147002, GSE147003, GSE147004, GSE223943 and GSE223944. Additional details can be found in Supplementary Note 2. The mammalian data can also be downloaded from the Clock Foundation webpage: https://clockfoundation.org/MammalianMethylationConsortium. The mammalian methylation array is available through the non-profit Epigenetic Clock Development Foundation (https://clockfoundation.org/). The manifest file of the mammalian array and genome annotations of CpG sites can be found on Zenodo (10.5281/zenodo.7574747). All other data supporting the findings of this study are available from the corresponding author upon reasonable request. The chip manifest files, genome annotations of CpG sites and the software code for universal pan-mammalian clocks can be found on GitHub95 at https://github.com/shorvath/MammalianMethylationConsortium/tree/v2.0.0. The individual R code for the universal pan-mammalian clocks, EWAS analysis and functional enrichment studies can be also found in the Supplementary Code.SUPPLEMENTARY MATERIAL 1 : Supplementary Tables 1–3 and Notes 1–6.SUPPLEMENTARY MATERIAL 2 : Reporting SummarySUPPLEMENTARY MATERIAL 3 : Supplementary Data 1–14.SUPPLEMENTARY MATERIAL 4 : Supplementary Code.Aging, often considered a result of random cellular damage, can be accurately estimated using DNA methylation profiles, the foundation of pan-tissue epigenetic clocks. Here, we demonstrate the development of universal pan-mammalian clocks, using 11,754 methylation arrays from our Mammalian Methylation Consortium, which encompass 59 tissue types across 185 mammalian species. These predictive models estimate mammalian tissue age with high accuracy (r > 0.96). Age deviations correlate with human mortality risk, mouse somatotropic axis mutations and caloric restriction. We identified specific cytosines with methylation levels that change with age across numerous species. These sites, highly enriched in polycomb repressive complex 2-binding locations, are near genes implicated in mammalian development, cancer, obesity and longevity. Our findings offer new evidence suggesting that aging is evolutionarily conserved and intertwined with developmental processes across all mammals.https://www.nature.com/nataginghj2024Zoology and EntomologySDG-15:Life on lan
    • 

    corecore