72 research outputs found

    Proof-of-concept Raman spectroscopy study aimed to differentiate thyroid follicular patterned lesions.

    Get PDF
    Inter-observer variability and cancer over-diagnosis are emerging clinical problems, especially for follicular patterned thyroid lesions. This challenge strongly calls for a new clinical tool to reliably identify neoplastic lesions and to improve the efficiency of differentiation between benign and malignant neoplasms, especially considering the increased diagnosis of small carcinomas and the growing number of thyroid nodules. In this study, we employed a Raman spectroscopy (RS) microscope to investigate frozen thyroid tissues from fourteen patients with thyroid nodules. To generate tissue classification models, a supervised statistical analysis of the Raman spectra was performed. The results obtained demonstrate an accuracy of 78% for RS based diagnosis to discriminate between normal parenchyma and follicular patterned thyroid nodules, and 89% accuracy - for very challenging follicular lesions (carcinoma versus adenoma). RS translation into intraoperative diagnosis of frozen sections and in preoperative analysis of biopsies can be very helpful to reduce unnecessary surgery in patients with indeterminate cytological reports

    Proteomics: in pursuit of effective traumatic brain injury therapeutics

    Get PDF
    Effective traumatic brain injury (TBI) therapeutics remain stubbornly elusive. Efforts in the field have been challenged by the heterogeneity of clinical TBI, with greater complexity among underlying molecular phenotypes than initially conceived. Future research must confront the multitude of factors comprising this heterogeneity, representing a big data challenge befitting the coming informatics age. Proteomics is poised to serve a central role in prescriptive therapeutic development, as it offers an efficient endpoint within which to assess post-TBI biochemistry. We examine rationale for multifactor TBI proteomic studies and the particular importance of temporal profiling in defining biochemical sequences and guiding therapeutic development. Lastly, we offer perspective on repurposing biofluid proteomics to develop theragnostic assays with which to prescribe, monitor and assess pharmaceutics for improved translation and outcome for TBI patients

    Supersymmetric QCD corrections to e+etbˉHe^+e^-\to t\bar{b}H^- and the Bernstein-Tkachov method of loop integration

    Full text link
    The discovery of charged Higgs bosons is of particular importance, since their existence is predicted by supersymmetry and they are absent in the Standard Model (SM). If the charged Higgs bosons are too heavy to be produced in pairs at future linear colliders, single production associated with a top and a bottom quark is enhanced in parts of the parameter space. We present the next-to-leading-order calculation in supersymmetric QCD within the minimal supersymmetric SM (MSSM), completing a previous calculation of the SM-QCD corrections. In addition to the usual approach to perform the loop integration analytically, we apply a numerical approach based on the Bernstein-Tkachov theorem. In this framework, we avoid some of the generic problems connected with the analytical method.Comment: 14 pages, 6 figures, accepted for publication in Phys. Rev.

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Localization and broadband follow-up of the gravitational-wave transient GW150914

    Get PDF
    A gravitational-wave (GW) transient was identified in data recorded by the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) detectors on 2015 September 14. The event, initially designated G184098 and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimates of the time, significance, and sky location of the event were shared with 63 teams of observers covering radio, optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter we describe the low-latency analysis of the GW data and present the sky localization of the first observed compact binary merger. We summarize the follow-up observations reported by 25 teams via private Gamma-ray Coordinates Network circulars, giving an overview of the participating facilities, the GW sky localization coverage, the timeline, and depth of the observations. As this event turned out to be a binary black hole merger, there is little expectation of a detectable electromagnetic (EM) signature. Nevertheless, this first broadband campaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broad capabilities of the transient astronomy community and the observing strategies that have been developed to pursue neutron star binary merger events. Detailed investigations of the EM data and results of the EM follow-up campaign are being disseminated in papers by the individual teams

    Comparability of Raman Spectroscopic Configurations: A Large Scale Cross-Laboratory Study

    Get PDF
    This is the final version. Available on open access from the American Chemical Society via the DOI in this recordThe variable configuration of Raman spectroscopic platforms is one of the major obstacles in establishing Raman spectroscopy as a valuable physicochemical method within real-world scenarios such as clinical diagnostics. For such real world applications like diagnostic classification, the models should ideally be usable to predict data from different setups. Whether it is done by training a rugged model with data from many setups or by a primary-replica strategy where models are developed on a 'primary' setup and the test data are generated on 'replicate' setups, this is only possible if the Raman spectra from different setups are consistent, reproducible, and comparable. However, Raman spectra can be highly sensitive to the measurement conditions, and they change from setup to setup even if the same samples are measured. Although increasingly recognized as an issue, the dependence of the Raman spectra on the instrumental configuration is far from being fully understood and great effort is needed to address the resulting spectral variations and to correct for them. To make the severity of the situation clear, we present a round robin experiment investigating the comparability of 35 Raman spectroscopic devices with different configurations in 15 institutes within seven European countries from the COST (European Cooperation in Science and Technology) action Raman4clinics. The experiment was developed in a fashion that allows various instrumental configurations ranging from highly confocal setups to fibre-optic based systems with different excitation wavelengths. We illustrate the spectral variations caused by the instrumental configurations from the perspectives of peak shifts, intensity variations, peak widths, and noise levels. We conclude this contribution with recommendations that may help to improve the inter-laboratory studies.COST (European Cooperation in Science and Technology)Portuguese Foundation for Science and TechnologyNational Research Fund of Luxembourg (FNR)China Scholarship Council (CSC)BOKU Core Facilities Multiscale ImagingDeutsche Forschungsgemeinschaft (DFG, German Research Foundation

    Search for Gravitational Waves Associated with Gamma-Ray Bursts during the First Advanced LIGO Observing Run and Implications for the Origin of GRB 150906B

    Get PDF
    We present the results of the search for gravitational waves (GWs) associated with γ-ray bursts detected during the first observing run of the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO). We find no evidence of a GW signal for any of the 41 γ-ray bursts for which LIGO data are available with sufficient duration. For all γ-ray bursts, we place lower bounds on the distance to the source using the optimistic assumption that GWs with an energy of 102Mc2{10}^{-2}{M}_{\odot }{c}^{2} were emitted within the 1616500500 Hz band, and we find a median 90% confidence limit of 71 Mpc at 150 Hz. For the subset of 19 short/hard γ-ray bursts, we place lower bounds on distance with a median 90% confidence limit of 90 Mpc for binary neutron star (BNS) coalescences, and 150 and 139 Mpc for neutron star–black hole coalescences with spins aligned to the orbital angular momentum and in a generic configuration, respectively. These are the highest distance limits ever achieved by GW searches. We also discuss in detail the results of the search for GWs associated with GRB 150906B, an event that was localized by the InterPlanetary Network near the local galaxy NGC 3313, which is at a luminosity distance of 5454 Mpc (z = 0.0124). Assuming the γ-ray emission is beamed with a jet half-opening angle 30\leqslant 30^\circ , we exclude a BNS and a neutron star–black hole in NGC 3313 as the progenitor of this event with confidence >99%. Further, we exclude such progenitors up to a distance of 102 Mpc and 170 Mpc, respectively

    New Hard and Superhard Materials: RhB1.1 and IrB1.35

    No full text
    The research activity into the designing of superhard materials is in continuous progress. Vickers hardness data obtained in this work reveal IrB1.35 to be superhard, whereas RhB1.1 was found to be hard. The trend in hardness of borides of the transition metals, belonging to the 5th and 6th period of the periodic table, was examd

    Calcium phosphate and fluorinated calcium phosphate coatings on titanium deposited by Nd : YAG laser at a high fluence

    No full text
    Calcium phosphate coatings are known to enhance long-term fixation, reliability and promote osteointegration of cementless titanium-based implant devices. This study was aimed at the pulsed laser deposition of calcium phosphate coatings onto titanium using hydroxyapatite and hydroxyapatite-fluorapatite targets. The deposition was carried out at the high laser beam fluence conditions, about 12 J/cm2. The coatings were characterized with respect to their morphol., phase compn. and hardness. X-ray energy dispersive anal. revealed the coatings retain their elemental compn., and fluoride content within the film is the same as in the initial target. However, unlike sintered targets, the deposited films contain no apatite-like phases. The hardness of the films, about 18 GPa, is surprisingly high compared to that of hydroxyapatite and hydroxyapatite-fluorapatite ceramic targets. The deposited coatings of 2.7-2.9 μm thickness have uniform and dense microstructure, contg. the solidified droplets of the expulsed from the target phase. The uncommon structure and hardness of the films can be attributed to the melting and phase decompn. of the initial material in the laser plasma

    Superhard rhenium diboride films: preparation and characterization

    No full text
    Recently, the superhardness of rhenium diboride was discovered. This study presents a first successful preparation and characterization of thin ReB2 films. The films were deposited by the pulsed laser deposition (PLD) technique. The morphology, microstructure, and hardness of the films were investigated. The films are compact and continuous, with a preferred (002) orientation. The composite Vickers hardness of the film−substrate systems was measured, and the intrinsic hardness of the films was separated using an area law-of-mixtures approach taking into account the indentation size effect. The obtained films are found to be superhard: the intrinsic film hardness value (52 GPa) is close to that of the ReB2 bulk
    corecore