14 research outputs found

    Experimental Study of Cotton stalks Gasification in a Downdraft Reactor

    Get PDF
    Biomass gasification process is considered a promising waste-to-energy conversion technique to eliminate the immense environmental issues accompanied with open field burning. The objective of this study is to experimentally study the dynamic behavior of an Imbert based design manufactured bench scale gasifier using cotton stalks as a feed stock. Air was employed as a gasifying agent with a biomass batch feed of 4 kg. The gasification process characteristics are evaluated in terms of lower heating value, gasification efficiency, and operation time. The applied air flow rates are (60, 100, 150, and 200 l/m) achieving varied equivalence ratios between 0.362 – 0.232. An optimum average lower heating value and cold gas efficiency of 4.34 MJ/m3 and 61.7 % respectively are attained at equivalence ratio, ER of 0.304

    Comprehensive process simulation of a biomass-based hydrogen production system through gasification within the BECCS concept in a commercial two-stage fixed bed gasifier

    Get PDF
    Hydrogen production through biomass gasification coupled with carbon capture has the potential to be a net negative emission process. Among the different designs of biomass gasifiers, the two-stage fixed bed gasifier has proved its ability to produce high quality syngas with minimum tar content at an industrial scale. However, it has not been investigated for hydrogen production. Hence, the current study is the first attempt to assess, through process modelling, the technical feasibility of hydrogen production in a 10 MWth two-stage gasification system using wood chips as feedstock. Mass and energy balances have been established in the Aspen Plus and MATLAB software. In contrast to most models in the literature, which were based on the equilibrium approach, the proposed system utilizes reliable kinetic models for the gasifier operation and the main downstream processes. An extensive validation of the gasifier kinetic model has been carried out and then a sensitivity analysis, which has revealed that the optimum steam-to-biomass ration (SBR) is 0.8 and 1.2 for the air-steam and the oxy-steam gasification systems, respectively. Further, the optimum steam-to-CO ratio (S/CO) for the water gas shift reactors (WGSRs) is 4, under which an overall 82.9% conversion of CO has been achieved. The results show that the 10 MWth two-stage gasifier can attain a specific hydrogen yield of 81.47 gH2/kg dry biomass. Based on the carbon footprint assessment, the process is net negative with an emission factor of −1.38 kgCO2-eq/kg biomass. Further, heat integration has also been conducted and it was found that the energy conversion efficiency of the whole system is 49.6%. This study is important since it provides a reliable data source for biomass-based hydrogen production through gasification in a commercial two-stage gasifier that can dictate operational strategies of pilot and demo plants

    An improved kinetic modelling of woody biomass gasification in a downdraft reactor based on the pyrolysis gas evolution

    Get PDF
    Biomass gasification technology is evolving and more research through modelling alongside the experimental work needs to be performed. In the past, all the attention has been concentrated on the combustion and reduction stages to be the controlling reactions while the pyrolysis is modelled as an instantaneous process. In this study, a new enhanced model for the gasification process in the downdraft reactor is proposed with a more realistic representation of the pyrolysis stage as a temperature-dependent sequential release of gases. The evolution of the pyrolysis gas, followed by the combustion and reduction reactions, are kinetically controlled in the proposed model which is developed within the Aspen Plus software package. The simulation of the reactor temperature profile and the evolution of the pyrolysis gas is carried out in an integrated MATLAB and Aspen Plus model. The proposed model has been validated against experimental data obtained from the gasification of different woody biomass types and considering a range of scale reactor and power loads. The predicted results are in very good agreement with the experimental data, and therefore the model can be used with confidence to perform a sensitivity analysis to predict the performance of a gasifier at different load levels corresponding to the air flow rate range of 3–10 L/s. As the supplied air flow rate increases, the LHV decreases but the gas yield behaves conversely, and in turn the cold gas efficiency is maintained at a good level of energy conversion at ≥ 70%. Furthermore, the variation in the biomass moisture content, which is commonly in the range of 5–25 % has a significant effect on the gasification efficiency. Such that biomass that has a high moisture content substantially reduces the CO content and consequently the LHV of the produced gas. Hence, it is important to maintain the moisture content at the lowest level

    A Comprehensive Technoeconomic and Environmental Evaluation of a Hybrid Renewable Energy System for a Smart Farm in South Korea

    Get PDF
    The farming sector like any other industry needs to be decarbonized. Hence, it is essential to meet the energy demands of the farms by adopting energy systems with a low-carbon footprint. Depending on the weather conditions, heating or cooling is needed. Within this context, this study presents a new hybrid renewable decentralized energy system that is designed to satisfy the requirements for heating, cooling, and electricity of a smart farm in South Korea. The under-investigation energy system comprises solar PV arrays, heat pumps, thermal energy storage tanks, and a wood pellet boiler. This study is the first to conduct an inclusive techno-enviroeconomic assessment of such a hybrid energy system by utilizing actual meteorological data on an hourly basis. This enables the model to be dynamic and facilitate accurate and reliable assessments. The modelling efforts have been performed in Aspen Plus and MATLAB to investigate the thermodynamic behaviour of the system. The investigation shows that the proposed system has achieved a daily average temperature of around 23.9°C inside the farm throughout the year with a standard deviation of 2.16°C. For the economic assessment, the levelized cost of energy has been selected as the main economic indicator, and this has been estimated at $0.218/kWh. It is found that the PV panels and the biomass boiler dominate the capital expenditures, and the biomass feedstock is the major contributor to the operating expenditures. Further, the proposed energy system reduces CO2 emissions, by up to 88.94%, when compared to conventional fossil-based energy systems. The outcomes of this study represent a holistic evaluation for such a low-carbon hybrid energy system when applied to greenhouses in Korea and in similar locations

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Salinity Effects on Gene Expression, Morphological, and Physio-Biochemical Responses of Stevia rebaudiana Bertoni In Vitro

    No full text
    Stevia rebaudiana Bertoni is a little bush, which is cultivated on a large scale in many countries for medicinal purposes and used as a natural sweetener in food products. The present work aims to conduct a protocol for stevia propagation in vitro to produce and introduce Stevia rebaudiana plants as a new sweetener crop to Egyptian agriculture. To efficiently maximize its propagation, it is important to study the influence of stress factors on the growth and development of Stevia rebaudiana grown in vitro. Two stevia varieties were investigated (Sugar High A3 and Spanti) against salt stress. Leaves were used as the source of explants for callus initiation, regeneration, multiplication and rooting. Some stress-related traits, i.e., photosynthetic pigments, proline contents, and enzyme activity for peroxidase (POD), polyphenol oxidase (PPO), and malate dehydrogenase (MDH) were studied. Murashig and Skoog (MS) medium was supplemented with four NaCl concentrations: 500, 1000, 2000, and 3000 mgL−1, while a salt-free medium was used as the control. The data revealed that salinity negatively affected all studied characters: the number of surviving calli, regeneration%, shoot length, the number of multiple shoots, number of leaf plantlets−1, number of root plantlets−1, and root length. The data also revealed that Sugar High A3 is more tolerant than Spanti. The total chlorophyll content decreased gradually with increasing NaCl concentration. However, the opposite was true for proline content. Isozyme’s fractionation exhibited high levels of variability among the two varieties. Various biochemical parameters associated with salt tolerance were detected in POD. Namely, POD4, POD6, POD 9 at an Rf of 0.34, 0.57, and 0.91 in the Sugar High A3 variety under high salt concentration conditions, as well as POD 10 at an Rf of 0.98 in both varieties under high salt concentrations. In addition, the overexpression of POD 5 and POD 10 at Rf 0.52 and 0.83 was found in both varieties at high NaCl concentrations. Biochemical parameters associated with salt tolerance were detected in PPO (PPO1, PPO2 and PPO4 at an Rf of 0.38, 0.42 and 0.62 in the Sugar High A3 variety under high salt concentrations) and MDH (MDH 3 at an Rf of 0.40 in both varieties at high salt concentrations). Therefore, these could be considered as important biochemical markers associated with salt tolerance and could be applied in stevia breeding programs (marker-assisted selection). This investigation recommends stevia variety Sugar High A3 to be cultivated under salt conditions

    DEA Praktikum Köln 23/24

    No full text
    corecore