28 research outputs found

    Evaluation of the Antiasthmatic Activity of Methanolic Extract of Trigonella Foenum Graecum on Experimental Models of Bronchial Asthma

    Get PDF
    The present study deals with the phytochemical screening and evaluation of antiasthmatic activity of methanolic extract of Trigonella foenumgraecum on experimental models of bronchial asthma and anaphylaxis. The antiasthmatic activity was studied on histamine-induced bronchospasm in guinea pig (Dunkey-Hartley) for respiratory parameters such as maximum airflow, minimum airflow, tidal volume, respiratory rate, minute volume, specific airway resistance determination on double chambered whole body plethysmography on un-anesthetized guinea pigs, for mast cell degranulation by compound 48/80 (in vitro) was done using rat (Albino Wistar) peritoneal fluid. Trigonella foenum graecum treated result indicated significant protection against histamine-induced bronchospasm in guinea pigs at highest dose i.e. 400mg/kg. The bronchodilatory effect of Trigonella foenum graecum was found comparable to the protection offered by the standard drug Salbutamol on respiratory parameters in double chambered whole body plethysmography, Treatment with Trigonella foenum graecum at a dose of 400mg/kg showed a significant decrease in degranulation rate of actively and passively sensitized mast cells of sensitized rats when challenged with antigen. Trigonella foenum graecum. Possess significant anti-asthmatic activity due to its potential anti inflammatory, antioxidant and the antihistaminic activity, which reflects as anti-degranulating effect on mast cells and on respiratory parameters. Keywords: Trigonella foenum graecum; asthma; mast cell; compound 48/80; histamin

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    Calibration of the CMS hadron calorimeters using proton-proton collision data at root s=13 TeV

    Get PDF
    Methods are presented for calibrating the hadron calorimeter system of theCMSetector at the LHC. The hadron calorimeters of the CMS experiment are sampling calorimeters of brass and scintillator, and are in the form of one central detector and two endcaps. These calorimeters cover pseudorapidities vertical bar eta vertical bar ee data. The energy scale of the outer calorimeters has been determined with test beam data and is confirmed through data with high transverse momentum jets. In this paper, we present the details of the calibration methods and accuracy.Peer reviewe

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    A Novel Method for Real Time Protection of DC Microgrid Using Cumulative Summation and Wavelet Transform

    Get PDF
    DC microgrid is a compact framework comprising interconnected nearby sources and loads. The renewable energy source used in DC microgrids being intermittent leads to the change in the power availability as well as the fault current levels. In such situations, detecting and clearing the faults is very important to protect the DC microgrid without compromising on fault clearing time and interruption of the load. This paper proposes a hybrid Cumulative Sum (CumSum) and Wavelet transform-based approach to detect the fault. The CumSum value raises the amplitude by averaging the fault current. Wavelet transforms obtain important fault current features by decomposing the current signal. The hybrid method of CumSum and Wavelet analysis proposed here enables the detection of the fault and differentiates the fault condition from sudden load variation. Additionally, it helps to recognize the location of the fault by the wavelet energy difference. The proposed scheme is tested with a developed ring-type low voltage DC (LVDC) microgrid hardware model under various fault conditions. The scheme is implemented using TMS320F28069 digital signal processors (DSP) of Texas Instruments. The hardware results are validated using MATLAB simulation. The proposed method performance is also compared with the existing methods used for DC microgrid protection. The outcome shows that the proposed method has a high accuracy of 98.72%, selectivity of 96.08%, and reliability of 99.01%. The execution time required by the proposed method is also less

    Not Available

    No full text
    Not AvailableMango hopper (Hemiptera: Cicadellidae) is serious and widespread monophagous pests of mango, Mangifera indica L. in tropical and sub-tropical region of India. The present investigation was carried out for weekly data interval of 20 consecutive years (1998–2017) to understand the population dynamics of mango hoppers and developed good fit time series prediction model for better management of hoppers in humid agro-climatic conditions. The relationship between weather parameters and mango hopper population showed that maximum temperature and relative humidity had significant effect on mango hopper population dynamics. Time series seasonal autoregressive integrated moving average (SARIMA) model was fitted from several plausible SARIMA models for forecasting the mango hoppers population. A best-fit SARIMA (1, 0, 2) × (1, 1, 1)52 model within tolerable errors with fitted comparative performance parameters in terms of root mean square error (RMSE), MSE, mean absolute error (MAE) and MA percentage error (MAPE) parameters were observed. Forecasting model develop in this study will predict mango hopper well in advance which can be used for timely better management of hoppers in mango agro-ecosystem.Not Availabl

    Proceedings of National Conference on Relevance of Engineering and Science for Environment and Society

    No full text
    This conference proceedings contains articles on the various research ideas of the academic community and practitioners presented at the National Conference on Relevance of Engineering and Science for Environment and Society (R{ES}2 2021). R{ES}2 2021 was organized by Shri Pandurang Pratishthan’s, Karmayogi Engineering College, Shelve, Pandharpur, India on July 25th, 2021. Conference Title: National Conference on Relevance of Engineering and Science for Environment and SocietyConference Acronym: R{ES}2 2021Conference Date: 25 July 2021Conference Location: Online (Virtual Mode)Conference Organizers: Shri Pandurang Pratishthan’s, Karmayogi Engineering College, Shelve, Pandharpur, India
    corecore