160 research outputs found

    Post cardiac surgery vasoplegia is associated with high preoperative copeptin plasma concentration

    Get PDF
    International audienceABSTRACT: INTRODUCTION: Post cardiac surgery vasodilatation is possibly related to a vasopressin deficiency that could be related to a chronic stimulation of the adeno-hypophysis. To assess vasopressin system activation, perioperative course of copeptin and vasopressin plasma concentrations have been studied in consecutive patients operated on cardiac surgery. METHODS: 64 consecutive patients scheduled for elective cardiac surgery with cardiopulmonary bypass were studied. Haemodynamic, laboratory and clinical data were recorded before and during cardiopulmonary bypass, and at the 8th post-operative hour (H8). At the same time, point's blood was withdrawn to determine plasma concentrations of arginine-vasopressin (AVP, radioimmunoassay) and copeptin (immunoluminometric assay). Post cardiac surgery vasodilation (PCSV) was defined as a mean arterial blood pressure less than 60 mmHg with a cardiac index [equal to or greater than] 2.2 L * min^-1 * m^-2, and was treated with norepinephrine (NE) in order to restore a mean blood pressure > 60 mmHg. Patients with PCSV were compared to the other patients (controls). Student's t, Fisher's exact test, or non parametric tests (Mann Whitney, Wilkoxon) were used when appropriate. A correlation between AVP and copeptin has been evaluated and a receiver-operator characteristic (ROC) analysis was calculated to assess the utility of preoperative copeptin to distinguish between controls and PCSV patients. RESULTS: Patients who experienced a PCSV have significantly higher copeptin plasma concentration before cardiopulmonary bypass (P <0.001) but lower AVP concentrations at H8 (P <0.01) than controls. PCSV patients had preoperative hyponatremia and decreased left ventricle ejection fraction, and experienced more complex surgery (redo). The area under the ROC curve of preoperative copeptin concentration was 0.86[plus/minus]0.04 [95%CI: 0.78-0.94] (P <0.001). The best predictive value for preoperative copeptin plasma concentration was 9.43 pmol/L with a sensitivity of 90% and a specificity of 77%. CONCLUSIONS: High preoperative copeptin plasma concentration is predictive of PSCV and suggests an activation of the AVP system before surgery that may facilitate depletion of endogenous AVP stores and a relative AVP deficit after surgery

    Mass spectrometry analysis of saponins

    Get PDF
    peer reviewedSaponins are amphiphilic molecules of pharmaceutical interest and most of their biological activities (i.e. cytotoxic, hemolytic, fungicide...) are associated to their membranolytic properties. These molecules are secondary metabolites present in numerous plants and in some marine animals, such as sea cucumbers and starfishes. Structurally, all saponins correspond to the combination of a hydrophilic glycan, consisting of sugar chain(s), linked to a hydrophobic triterpenoidic or steroidic aglycone, named the sapogenin. Saponins present a high structural diversity and their structural characterization remains extremely challenging. Ideally, saponin structures are best established using nuclear magnetic resonance experiments conducted on isolated molecules. However, the extreme structural diversity of saponins makes them challenging from a structural analysis point of view since, most of the time, saponin extracts consist in a huge number of congeners presenting only subtle structural differences. In the present review, we wish to offer an overview of the literature related to the development of mass spectrometry for the study of saponins. This review will demonstrate that most of the past and current mass spectrometry methods, including electron, electrospray and MALDI ionizations, gas/liquid chromatography coupled to (tandem) mass spectrometry, collision-induced dissociation including MS3 experiments, multiple reaction monitoring based quantification, ion mobility experiments... have been used for saponin investigations with great success on enriched extracts but also directly on tissues using imaging methods

    Exploring thienothiadiazine dioxides as isosteric analogues of benzo-and pyridothiadiazine dioxides in the search of new AMPA and kainate receptor positive allosteric modulators

    Full text link
    peer reviewedThe synthesis and biological evaluation on AMPA and kainate receptors of new examples of 3,4-dihydro-2H-1,2,4-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxides is described. The introduction of a cyclopropyl chain instead of an ethyl chain at the 4-position of the thiadiazine ring was found to dramatically improve the potentiator activity on AMPA receptors, with compound 32 (BPAM395) expressing in vitro activity on AMPARs (EC2x = 0.24 μM) close to that of the reference 4-cyclopropyl-substituted benzothiadiazine dioxide 10 (BPAM344). Interestingly, the 4-allyl-substituted thienothiadiazine dioxide 27 (BPAM307) emerged as the most promising compound on kainate receptors being a more effective potentiator than the 4-cyclopropyl-substituted thienothiadiazine dioxide 32 and supporting the view that the 4-allyl substitution of the thiadiazine ring could be more favorable than the 4-cyclopropyl substitution to induce marked activity on kainate receptors versus AMPA receptors. The thieno-analogue 36 (BPAM279) of the clinically tested S18986 (11) was selected for in vivo evaluation in mice as a cognitive enhancer due to a safer profile than 32 after massive per os drug administration. Compound 36 was found to increase the cognition performance in mice at low doses (1 mg/kg) per os suggesting that the compound was well absorbed after oral administration and able to reach the central nervous system. Finally, compound 32 was selected for co-crystallization with the GluA2-LBD (L504Y,N775S) and glutamate to examine the binding mode of thienothiadiazine dioxides within the allosteric binding site of the AMPA receptor. At the allosteric site, this compound established similar interactions as the previously reported BTD-type AMPA receptor modulators

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency–Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    Impact of the Hydrolysis and Methanolysis of Bidesmosidic Chenopodium quinoa Saponins on Their Hemolytic Activity.

    Get PDF
    peer reviewedSaponins are specific metabolites abundantly present in plants and several marine animals. Their high cytotoxicity is associated with their membranolytic properties, i.e., their propensity to disrupt cell membranes upon incorporation. As such, saponins are highly attractive for numerous applications, provided the relation between their molecular structures and their biological activities is understood at the molecular level. In the present investigation, we focused on the bidesmosidic saponins extracted from the quinoa husk, whose saccharidic chains are appended on the aglycone via two different linkages, a glycosidic bond, and an ester function. The later position is sensitive to chemical modifications, such as hydrolysis and methanolysis. We prepared and characterized three sets of saponins using mass spectrometry: (i) bidesmosidic saponins directly extracted from the ground husk, (ii) monodesmosidic saponins with a carboxylic acid group, and (iii) monodesmosidic saponins with a methyl ester function. The impact of the structural modifications on the membranolytic activity of the saponins was assayed based on the determination of their hemolytic activity. The natural bidesmosidic saponins do not present any hemolytic activity even at the highest tested concentration (500 µg·mL-1). Hydrolyzed saponins already degrade erythrocytes at 20 µg·mL-1, whereas 100 µg·mL-1 of transesterified saponins is needed to induce detectable activity. The observation that monodesmosidic saponins, hydrolyzed or transesterified, are much more active against erythrocytes than the bidesmosidic ones confirms that bidesmosidic saponins are likely to be the dormant form of saponins in plants. Additionally, the observation that negatively charged saponins, i.e., the hydrolyzed ones, are more hemolytic than the neutral ones could be related to the red blood cell membrane structure
    corecore