22 research outputs found

    Cellular reprogramming and epigenetic rejuvenation

    Get PDF

    Dnmt2-dependent methylomes lack defined DNA methylation patterns

    Get PDF
    Several organisms have retained methyltransferase 2 (Dnmt2) as their only candidate DNA methyltransferase gene. However, information about Dnmt2-dependent methylation patterns has been limited to a few isolated loci and the results have been discussed controversially. In addition, recent studies have shown that Dnmt2 functions as a tRNA methyltransferase, which raised the possibility that Dnmt2-only genomes might be unmethylated. We have now used whole-genome bisulfite sequencing to analyze the methylomes of Dnmt2-only organisms at single-base resolution. Our results show that the genomes of Schistosoma mansoni and Drosophila melanogaster lack detectable DNA methylation patterns. Residual unconverted cytosine residues shared many attributes with bisulfite deamination artifacts and were observed at comparable levels in Dnmt2-deficient flies. Furthermore, genetically modified Dnmt2-only mouse embryonic stem cells lost the DNA methylation patterns found in wild-type cells. Our results thus uncover fundamental differences among animal methylomes and suggest that DNA methylation is dispensable for a considerable number of eukaryotic organisms

    Comparison of whole-genome bisulfite sequencing library preparation strategies identifies sources of biases affecting DNA methylation data.

    Get PDF
    BACKGROUND: Whole-genome bisulfite sequencing (WGBS) is becoming an increasingly accessible technique, used widely for both fundamental and disease-oriented research. Library preparation methods benefit from a variety of available kits, polymerases and bisulfite conversion protocols. Although some steps in the procedure, such as PCR amplification, are known to introduce biases, a systematic evaluation of biases in WGBS strategies is missing. RESULTS: We perform a comparative analysis of several commonly used pre- and post-bisulfite WGBS library preparation protocols for their performance and quality of sequencing outputs. Our results show that bisulfite conversion per se is the main trigger of pronounced sequencing biases, and PCR amplification builds on these underlying artefacts. The majority of standard library preparation methods yield a significantly biased sequence output and overestimate global methylation. Importantly, both absolute and relative methylation levels at specific genomic regions vary substantially between methods, with clear implications for DNA methylation studies. CONCLUSIONS: We show that amplification-free library preparation is the least biased approach for WGBS. In protocols with amplification, the choice of bisulfite conversion protocol or polymerase can significantly minimize artefacts. To aid with the quality assessment of existing WGBS datasets, we have integrated a bias diagnostic tool in the Bismark package and offer several approaches for consideration during the preparation and analysis of WGBS datasets.This work was supported by the Biotechnology and Biological Sciences Research Council (CASE studentship to N.O., BB/K010867/1 to W.R.), Wellcome Trust (095645/Z/11/Z to W.R.), EU EpiGeneSys (257082 to W.R.) and EU BLUEPRINT (282510 to W.R.); Babraham Institute/Cambridge European Trust scholarship to N.O.; M.R.B. is a Sir Henry Dale Fellow (101225/Z/ 13/Z), jointly funded by the Wellcome Trust and the Royal Society

    Tracking the embryonic stem cell transition from ground state pluripotency

    Get PDF
    Mouse embryonic stem (ES) cells are locked into self-renewal by shielding from inductive cues. Release from this ground state in minimal conditions offers a system for delineating developmental progression from naive pluripotency. Here we examined the initial transition process. The ES cell population behaves asynchronously. We therefore exploited a short-half-life Rex1::GFP\textit{Rex1::GFP} reporter to isolate cells either side of exit from naive status. Extinction of ES cell identity in single cells is acute. It occurs only after near-complete elimination of naïve pluripotency factors, but precedes appearance of lineage specification markers. Cells newly departed from the ES cell state display features of early post-implantation epiblast and are distinct from primed epiblast. They also exhibit a genome-wide increase in DNA methylation, intermediate between early and late epiblast. These findings are consistent with the proposition that naive cells transition to a distinct formative phase of pluripotency preparatory to lineage priming.This research was funded by the Wellcome Trust (091484/Z/10/Z and 095645/Z/11/Z), the Biotechnology and Biological Sciences Research Council (BB/M004023/1 and BB/K010867/1), a European Commission Framework 7 project EuroSyStem (HEALTH-F4-2007-200720 EUROSYSTEM), SysStemCell (ERC-2013-AdG 339431), the Medical Research Council (MRC) (G1100526/1) the Louis-Jeantet Foundation and the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO-VIDI 864.12.007). The Cambridge Stem Cell Institute receives core funding from the Wellcome Trust and Medical Research Council (MRC). A.S. is an MRC Professor. Deposited in PMC for immediate release

    Tracking the embryonic stem cell transition from ground state pluripotency

    Get PDF
    Mouse embryonic stem (ES) cells are locked into self-renewal by shielding from inductive cues. Release from this ground state in minimal conditions offers a system for delineating developmental progression from naive pluripotency. Here we examined the initial transition process. The ES cell population behaves asynchronously. We therefore exploited a short-half-life Rex1::GFP\textit{Rex1::GFP} reporter to isolate cells either side of exit from naive status. Extinction of ES cell identity in single cells is acute. It occurs only after near-complete elimination of naïve pluripotency factors, but precedes appearance of lineage specification markers. Cells newly departed from the ES cell state display features of early post-implantation epiblast and are distinct from primed epiblast. They also exhibit a genome-wide increase in DNA methylation, intermediate between early and late epiblast. These findings are consistent with the proposition that naive cells transition to a distinct formative phase of pluripotency preparatory to lineage priming.This research was funded by the Wellcome Trust (091484/Z/10/Z and 095645/Z/11/Z), the Biotechnology and Biological Sciences Research Council (BB/M004023/1 and BB/K010867/1), a European Commission Framework 7 project EuroSyStem (HEALTH-F4-2007-200720 EUROSYSTEM), SysStemCell (ERC-2013-AdG 339431), the Medical Research Council (MRC) (G1100526/1) the Louis-Jeantet Foundation and the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO-VIDI 864.12.007). The Cambridge Stem Cell Institute receives core funding from the Wellcome Trust and Medical Research Council (MRC). A.S. is an MRC Professor. Deposited in PMC for immediate release

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    Notch Signaling Mediates Secondary Senescence

    No full text
    Oncogene-induced senescence (OIS) is a tumor suppressive response to oncogene activation that can be transmitted to neighboring cells through secreted factors of the senescence-associated secretory phenotype (SASP). Currently, primary and secondary senescent cells are not considered functionally distinct endpoints. Using single-cell analysis, we observed two distinct transcriptional endpoints, a primary endpoint marked by Ras and a secondary endpoint marked by Notch activation. We find that secondary oncogene-induced senescence in vitro and in vivo requires Notch, rather than SASP alone, as previously thought. Moreover, Notch signaling weakens, but does not abolish, SASP in secondary senescence. Global transcriptomic differences, a blunted SASP response, and the induction of fibrillar collagens in secondary senescence point toward a functional diversification between secondary and primary senescence
    corecore