63 research outputs found

    Soft x-ray spectroscopy of organic and organometallic molecules and polymers

    Get PDF
    In this thesis, two aspects of research in soft X-ray absorption spectroscopy chemistry are explored. The first objective was to measure the natural circular dichroism of small chiral organic molecules at soft X-ray wavelengths. The second objective was to characterize the electronic structure and spectra of a series of organometallic polymers. The goal of the first part of this thesis was to enhance the sensitivity of Near Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy to the intrinsic “handedness” of chiral organic molecules. The phenomenon of X-ray natural circular dichroism (XNCD) has been well described by theoreticians; however, there have been few successful measurements reported, mainly due to the weakness of the effect and the difficulty of preparing suitable samples. The fourth chapter of this thesis outlines the requirements for XNCD experiments and the efforts made to prepare appropriate samples. The goal of the second part was to use NEXAFS spectroscopy as an analytical technique for the elemental and chemical characterization of innovative materials based on organoiron compounds. The interpretation of transition metal compounds by NEXAFS spectroscopy is difficult due to complex interactions between the metal and its surroundings. Two approaches are commonly used; an atomic multiplet model and a covalent bonding model, which lead to conflicting spectral assignments. Earlier NEXAFS studies of metallocene complexes were found to be lacking as these two models were not adequately rationalized. Owing in part to greatly improved instrumental sensitivity and to efficient theoretical calculations, the interpretation of NEXAFS spectra for a series of metallocene and metal arene complexes was refined. Enhanced understanding of the spectroscopy of these compounds eventually contributed to the characterization of a series of organometallic polymeric materials.Underlining these studies is the remarkable complementarity of NEXAFS spectroscopy and chemistry. A comprehensive understanding of the chemistry of the samples examined in the measurement of XNCD is shown to be crucial for a successful advancement of this spectroscopy. In return, optimization of soft X-ray spectroscopy of metallocenes is demonstrated to remarkably benefit the understanding of the organometallic polymers

    Magnetic Ordering in Ultrasmall Potassium Ferrite Nanoparticles Grown on Graphene Nanoflakes

    Get PDF
    Magnetic nanoparticles are central to the development of efficient hyperthermia treatments, magnetic drug carriers, and multimodal contrast agents. While the magnetic properties of small crystalline iron oxide nanoparticles are well understood, the superparamagnetic size limit constitutes a significant barrier for further size reduction. Iron (oxy)hydroxide phases, albeit very common in the natural world, are far less studied, generally due to their poor crystallinity. Templating ultrasmall nanoparticles on substrates such as graphene is a promising method to prevent aggregation, typically an issue for both material characterization and applications. We generate ultrasmall nanoparticles, directly on the carbon framework by the reaction of a graphenide potassium solution, charged graphene flakes, with iron(II) salts. After mild water oxidation, the obtained composite material consists of ultrasmall potassium ferrite nanoparticles bound to the graphene nanoflakes. Magnetic properties as evidenced by magnetometry and X-ray magnetic circular dichroism, with open magnetic hysteresis loops near room temperature, are widely different from classical ultrasmall superparamagnetic iron oxide nanoparticles. The large value obtained for the effective magnetic anisotropy energy density Keff accounts for the presence of magnetic ordering at rather high temperatures. The synthesis of ultrasmall potassium ferrite nanoparticles under such mild conditions is remarkable given the harsh conditions used for the classical syntheses of bulk potassium ferrites. Moreover, the potassium incorporation in the crystal lattice occurs in the presence of potassium cations under mild conditions. A transfer of this method to related reactions would be of great interest, which underlines the synthetic value of this study. These findings also give another view on the previously reported electrocatalytic properties of these nanocomposite materials, especially for the sought-after oxygen reduction/evolution reaction. Finally, their longitudinal and transverse proton NMR relaxivities when dispersed in water were assessed at 37 °C under a magnetic field of 1.41 T, allowing potential applications in biological imaging.IdEx Bordeau

    Influence of alkylphosphonic acid grafting on the electronic and magnetic properties of La2/3Sr1/3MnO3 surfaces

    Get PDF
    Self-assembled monolayers (SAMs) are highly promising materials for molecular engineering of electronic and spintronics devices thanks to their surface functionalization properties. In this direction, alkylphosphonic acids have been used to functionalize the most common ferromagnetic electrode in organic spintronics: La2/3Sr1/3MnO3 (LSMO). However, a study on the influence of SAMs grafting on LSMO electronic and magnetic properties is still missing. In this letter, we probe the influence of alkylphosphonic acids-based SAMs on the electronic and magnetic properties of the LSMO surface using different spectroscopies. We observe by X-ray photoemission and X-ray absorption that the grafting of the molecules on the LSMO surface induces a reduction of the Mn oxidation state. Ultraviolet photoelectron spectroscopy measurements also show that the LSMO work function can be modified by surface dipoles opening the door to both tune the charge and spin injection efficiencies in organic devices such as organic light-emitting diodes.The research leading to these results was financially supported by the EU project NMP3-SL-2011-263104 HINTS and ANR agency (MELAMIN 2011-NANO-021). S.T. acknowledges the European Union FP7 CIG Marie Curie Actions under project SAMSFERE (FP7/2012–321739) and the Spanish MICINN for his JdC contract. P.S. wishes to thank the Institut Universitaire de France for a junior Fellowship. The research leading to these results was partly funded by the SFB/TRR 88 ‘3MET’ from the DFG. Experiments were performed on the “DEIMOS” beamline at SOLEIL Synchrotron, France (project No. 20100960)

    Height and body-mass index trajectories of school-aged children and adolescents from 1985 to 2019 in 200 countries and territories: a pooled analysis of 2181 population-based studies with 65 million participants

    Get PDF
    Summary Background Comparable global data on health and nutrition of school-aged children and adolescents are scarce. We aimed to estimate age trajectories and time trends in mean height and mean body-mass index (BMI), which measures weight gain beyond what is expected from height gain, for school-aged children and adolescents. Methods For this pooled analysis, we used a database of cardiometabolic risk factors collated by the Non-Communicable Disease Risk Factor Collaboration. We applied a Bayesian hierarchical model to estimate trends from 1985 to 2019 in mean height and mean BMI in 1-year age groups for ages 5–19 years. The model allowed for non-linear changes over time in mean height and mean BMI and for non-linear changes with age of children and adolescents, including periods of rapid growth during adolescence. Findings We pooled data from 2181 population-based studies, with measurements of height and weight in 65 million participants in 200 countries and territories. In 2019, we estimated a difference of 20 cm or higher in mean height of 19-year-old adolescents between countries with the tallest populations (the Netherlands, Montenegro, Estonia, and Bosnia and Herzegovina for boys; and the Netherlands, Montenegro, Denmark, and Iceland for girls) and those with the shortest populations (Timor-Leste, Laos, Solomon Islands, and Papua New Guinea for boys; and Guatemala, Bangladesh, Nepal, and Timor-Leste for girls). In the same year, the difference between the highest mean BMI (in Pacific island countries, Kuwait, Bahrain, The Bahamas, Chile, the USA, and New Zealand for both boys and girls and in South Africa for girls) and lowest mean BMI (in India, Bangladesh, Timor-Leste, Ethiopia, and Chad for boys and girls; and in Japan and Romania for girls) was approximately 9–10 kg/m2. In some countries, children aged 5 years started with healthier height or BMI than the global median and, in some cases, as healthy as the best performing countries, but they became progressively less healthy compared with their comparators as they grew older by not growing as tall (eg, boys in Austria and Barbados, and girls in Belgium and Puerto Rico) or gaining too much weight for their height (eg, girls and boys in Kuwait, Bahrain, Fiji, Jamaica, and Mexico; and girls in South Africa and New Zealand). In other countries, growing children overtook the height of their comparators (eg, Latvia, Czech Republic, Morocco, and Iran) or curbed their weight gain (eg, Italy, France, and Croatia) in late childhood and adolescence. When changes in both height and BMI were considered, girls in South Korea, Vietnam, Saudi Arabia, Turkey, and some central Asian countries (eg, Armenia and Azerbaijan), and boys in central and western Europe (eg, Portugal, Denmark, Poland, and Montenegro) had the healthiest changes in anthropometric status over the past 3·5 decades because, compared with children and adolescents in other countries, they had a much larger gain in height than they did in BMI. The unhealthiest changes—gaining too little height, too much weight for their height compared with children in other countries, or both—occurred in many countries in sub-Saharan Africa, New Zealand, and the USA for boys and girls; in Malaysia and some Pacific island nations for boys; and in Mexico for girls. Interpretation The height and BMI trajectories over age and time of school-aged children and adolescents are highly variable across countries, which indicates heterogeneous nutritional quality and lifelong health advantages and risks

    Molecular pathways associated with the nutritional programming of plant-based diet acceptance in rainbow trout following an early feeding exposure

    Full text link

    Heterogeneous contributions of change in population distribution of body mass index to change in obesity and underweight NCD Risk Factor Collaboration (NCD-RisC)

    Get PDF
    From 1985 to 2016, the prevalence of underweight decreased, and that of obesity and severe obesity increased, in most regions, with significant variation in the magnitude of these changes across regions. We investigated how much change in mean body mass index (BMI) explains changes in the prevalence of underweight, obesity, and severe obesity in different regions using data from 2896 population-based studies with 187 million participants. Changes in the prevalence of underweight and total obesity, and to a lesser extent severe obesity, are largely driven by shifts in the distribution of BMI, with smaller contributions from changes in the shape of the distribution. In East and Southeast Asia and sub-Saharan Africa, the underweight tail of the BMI distribution was left behind as the distribution shifted. There is a need for policies that address all forms of malnutrition by making healthy foods accessible and affordable, while restricting unhealthy foods through fiscal and regulatory restrictions

    On-Surface Magnetometry: The Evaluation of Superexchange Coupling Constants in Surface-Wired Single-Molecule Magnets

    No full text
    A comfortable environment: Interaction with a gold surface fully preserves the spin structure of a Fe3Cr single-molecule magnet of current interest in molecular spintronics. Magnetic polarization at metal sites is measured over a broad temperature range (from 10 to 300 K) by X-ray magnetic circular dichroism (XMCD), which provides the required monolayer sensitivity. The data are used to evaluate Fe-Cr superexchange coupling interactions, which compare well with bulk-phase values in both sign and strength
    corecore