33 research outputs found

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    Design and baseline characteristics of the finerenone in reducing cardiovascular mortality and morbidity in diabetic kidney disease trial

    Get PDF
    Background: Among people with diabetes, those with kidney disease have exceptionally high rates of cardiovascular (CV) morbidity and mortality and progression of their underlying kidney disease. Finerenone is a novel, nonsteroidal, selective mineralocorticoid receptor antagonist that has shown to reduce albuminuria in type 2 diabetes (T2D) patients with chronic kidney disease (CKD) while revealing only a low risk of hyperkalemia. However, the effect of finerenone on CV and renal outcomes has not yet been investigated in long-term trials. Patients and Methods: The Finerenone in Reducing CV Mortality and Morbidity in Diabetic Kidney Disease (FIGARO-DKD) trial aims to assess the efficacy and safety of finerenone compared to placebo at reducing clinically important CV and renal outcomes in T2D patients with CKD. FIGARO-DKD is a randomized, double-blind, placebo-controlled, parallel-group, event-driven trial running in 47 countries with an expected duration of approximately 6 years. FIGARO-DKD randomized 7,437 patients with an estimated glomerular filtration rate >= 25 mL/min/1.73 m(2) and albuminuria (urinary albumin-to-creatinine ratio >= 30 to <= 5,000 mg/g). The study has at least 90% power to detect a 20% reduction in the risk of the primary outcome (overall two-sided significance level alpha = 0.05), the composite of time to first occurrence of CV death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure. Conclusions: FIGARO-DKD will determine whether an optimally treated cohort of T2D patients with CKD at high risk of CV and renal events will experience cardiorenal benefits with the addition of finerenone to their treatment regimen. Trial Registration: EudraCT number: 2015-000950-39; ClinicalTrials.gov identifier: NCT02545049

    Mortality from gastrointestinal congenital anomalies at 264 hospitals in 74 low-income, middle-income, and high-income countries: a multicentre, international, prospective cohort study

    Get PDF
    Summary Background Congenital anomalies are the fifth leading cause of mortality in children younger than 5 years globally. Many gastrointestinal congenital anomalies are fatal without timely access to neonatal surgical care, but few studies have been done on these conditions in low-income and middle-income countries (LMICs). We compared outcomes of the seven most common gastrointestinal congenital anomalies in low-income, middle-income, and high-income countries globally, and identified factors associated with mortality. Methods We did a multicentre, international prospective cohort study of patients younger than 16 years, presenting to hospital for the first time with oesophageal atresia, congenital diaphragmatic hernia, intestinal atresia, gastroschisis, exomphalos, anorectal malformation, and Hirschsprung’s disease. Recruitment was of consecutive patients for a minimum of 1 month between October, 2018, and April, 2019. We collected data on patient demographics, clinical status, interventions, and outcomes using the REDCap platform. Patients were followed up for 30 days after primary intervention, or 30 days after admission if they did not receive an intervention. The primary outcome was all-cause, in-hospital mortality for all conditions combined and each condition individually, stratified by country income status. We did a complete case analysis. Findings We included 3849 patients with 3975 study conditions (560 with oesophageal atresia, 448 with congenital diaphragmatic hernia, 681 with intestinal atresia, 453 with gastroschisis, 325 with exomphalos, 991 with anorectal malformation, and 517 with Hirschsprung’s disease) from 264 hospitals (89 in high-income countries, 166 in middleincome countries, and nine in low-income countries) in 74 countries. Of the 3849 patients, 2231 (58·0%) were male. Median gestational age at birth was 38 weeks (IQR 36–39) and median bodyweight at presentation was 2·8 kg (2·3–3·3). Mortality among all patients was 37 (39·8%) of 93 in low-income countries, 583 (20·4%) of 2860 in middle-income countries, and 50 (5·6%) of 896 in high-income countries (p<0·0001 between all country income groups). Gastroschisis had the greatest difference in mortality between country income strata (nine [90·0%] of ten in lowincome countries, 97 [31·9%] of 304 in middle-income countries, and two [1·4%] of 139 in high-income countries; p≤0·0001 between all country income groups). Factors significantly associated with higher mortality for all patients combined included country income status (low-income vs high-income countries, risk ratio 2·78 [95% CI 1·88–4·11], p<0·0001; middle-income vs high-income countries, 2·11 [1·59–2·79], p<0·0001), sepsis at presentation (1·20 [1·04–1·40], p=0·016), higher American Society of Anesthesiologists (ASA) score at primary intervention (ASA 4–5 vs ASA 1–2, 1·82 [1·40–2·35], p<0·0001; ASA 3 vs ASA 1–2, 1·58, [1·30–1·92], p<0·0001]), surgical safety checklist not used (1·39 [1·02–1·90], p=0·035), and ventilation or parenteral nutrition unavailable when needed (ventilation 1·96, [1·41–2·71], p=0·0001; parenteral nutrition 1·35, [1·05–1·74], p=0·018). Administration of parenteral nutrition (0·61, [0·47–0·79], p=0·0002) and use of a peripherally inserted central catheter (0·65 [0·50–0·86], p=0·0024) or percutaneous central line (0·69 [0·48–1·00], p=0·049) were associated with lower mortality. Interpretation Unacceptable differences in mortality exist for gastrointestinal congenital anomalies between lowincome, middle-income, and high-income countries. Improving access to quality neonatal surgical care in LMICs will be vital to achieve Sustainable Development Goal 3.2 of ending preventable deaths in neonates and children younger than 5 years by 2030

    Antifungal Caspofungin Sensitizes MRSA Isolates Towards Zabofloxacin, A Proteomic Study

    No full text
    The incidence of methicillin-resistant Staphylococcus aureus (MRSA) having an increased rate of fluoroquinolone resistance is currently noted in Egypt necessitating the implication of new strategies to restrain the rapid spread of this resistance. The approach of repurposing could present a solution to this problem. In the current study, the efficacy of the antifungal agent, caspofungin, in increasing the susceptibility of MRSA isolated from Alexandria Main University Hospital (AMUH) to a novel fluoroquinolone, zabofloxacin, was investigated. A percentage of 30.3% of tested isolates were found to be resistant to zabofloxacin. Upon treatment with subinhibitory concentration of caspofungin, these isolates had their zabofloxacin minimum inhibitory concentration values decreased by a range varying from 2- to 32-fold. Proteomic approach was performed to provide insights into the involved mechanism of caspofungin sensitization. The profiles of cellular proteins generated by electrophoretic techniques varied between treated and untreated MRSA samples with polymorphism values ranging from 82.4 to 94.1%. Homology was detected between 1,3-beta-glucan synthase (the fungal target enzyme of caspofungin) and SdrM, a multidrug efflux pump in S. aureus. This homology was elaborated by immunoblotting analysis which showed downregulation of SdrM efflux pump proteins. The percentage of reduction in the SdrM proteins expression level varied from 18 to 61%. Caspofungin succeeded in sensitizing zabofloxacin-resistant MRSA clinical isolates by blocking the action of SdrM efflux pump and inhibiting its extrusion. Further research is urgently required to endorse the repositioning of caspofungin as an agent used in combination with zabofloxacin in the management of MRSA infections with higher efficiency

    Pathogenicity Islands in Uropathogenic <i>Escherichia coli</i> Clinical Isolate of the Globally Disseminated O25:H4-ST131 Pandemic Clonal Lineage: First Report from Egypt

    No full text
    Uropathogenic Escherichia coli (UPEC) is the main etiological agent of urinary tract infections (UTIs). The pathogenesis of UTIs relies upon UPEC’s acquisition of virulence determinants that are commonly inserted into large chromosomal blocks which are termed ‘pathogenicity islands’ (PAIs). In this study, we investigated the virulence-associated genes embedded in the chromosome of a UPEC Egyptian strain, EC14142. Additionally, we present a detailed characterization of the PAIs in the EGY_EC14142 chromosome. The isolate displayed a multidrug-resistant phenotype, and whole genome sequencing indicated that it belonged to the globally disseminated O25:H4-ST131 pandemic lineage and the H30-Rx clade. EGY_EC14142 carried genes that are responsible for resistance to aminoglycosides, fluoroquinolones, extended-spectrum β-lactams, macrolides, folate pathway antagonists, and tetracyclines. It encoded five PAIs with a high similarity to PAI II536, PAI IV536, PAI V536, PAI-536-icd, and PAIusp. The genome analysis of EGY_EC14142 with other closely related UPEC strains revealed that they have a high nucleotide sequence identity. The constructed maximum-likelihood phylogenetic tree showed the close clonality of EGY_EC14142 with the previously published ST131 UPEC international isolates, thus endorsing the broad geographical distribution of this clone. This is the first report characterizing PAIs in a UPEC Egyptian strain belonging to the globally disseminated pandemic clone O25:H4-ST131

    Genomic Characterization of International High-Risk Clone ST410 Escherichia coli Co-Harboring ESBL-Encoding Genes and blaNDM-5 on IncFIA/IncFIB/IncFII/IncQ1 Multireplicon Plasmid and Carrying a Chromosome-Borne blaCMY-2 from Egypt

    No full text
    The accelerated dispersion of multidrug-resistant (MDR) Escherichia coli due to the production of extended-spectrum &beta;-lactamases (ESBLs) or AmpC enzymes has been noted in Egypt, presenting a serious treatment challenge. In this study, we investigate the prevalence of ESBLs and AmpC enzymes among 48 E. coli isolates collected from patients with urinary tract infections admitted to a teaching hospital in Alexandria. Phenotypic and genotypic methods of detection are conducted. Isolates producing both enzymes are tested for the mobilization of their genes by a broth mating experiment. Whole genome sequencing (WGS) is performed for isolate EC13655. The results indicate that 80% of the isolates are MDR, among which 52% and 13% were ESBL and AmpC producers, respectively. Conjugation experiments fail to show the mobilization of blaCMY-2 in EC13655, which was chosen for WGS. In silico analysis reveals that the isolate belongs to a ST410-H24Rx high-risk clone. It coharbors the ESBL-encoding genes blaCTX-M-15, blaTEM-1, blaOXA-1 and blaNDM-5 on an IncFIA/IncFIB/IncFII/IncQ1 multireplicon plasmid. The chromosomal location of blaCMY-2 is detected with a flanking upstream copy of ISEcp1. This chromosomal integration of blaCMY-2 establishes the stable maintenance of the gene and thus, necessitates an imperative local surveillance to reduce further spread of such strains in different clinical settings

    Molecular chaperone accumulation as a function of stress evidences adaptation to high hydrostatic pressure in the piezophilic archaeon Thermococcus barophilus

    No full text
    The accumulation of mannosyl-glycerate (MG), the salinity stress response osmolyte of Thermococcales, was investigated as a function of hydrostatic pressure in Thermococcus barophilus strain MP, a hyperthermophilic, piezophilic archaeon isolated from the Snake Pit site (MAR), which grows optimally at 40 MPa. Strain MP accumulated MG primarily in response to salinity stress, but in contrast to other Thermococcales, MG was also accumulated in response to thermal stress. MG accumulation peaked for combined stresses. The accumulation of MG was drastically increased under sub-optimal hydrostatic pressure conditions, demonstrating that low pressure is perceived as a stress in this piezophile, and that the proteome of T. barophilus is low-pressure sensitive. MG accumulation was strongly reduced under supra-optimal pressure conditions clearly demonstrating the structural adaptation of this proteome to high hydrostatic pressure. The lack of MG synthesis only slightly altered the growth characteristics of two different MG synthesis deletion mutants. No shift to other osmolytes was observed. Altogether our observations suggest that the salinity stress response in T. barophilus is not essential and may be under negative selective pressure, similarly to what has been observed for its thermal stress response. Introductio

    Repurposing carvacrol, cinnamaldehyde, and eugenol as potential anti-quorum sensing agents against uropathogenic Escherichia coli isolates in Alexandria, Egypt

    No full text
    Abstract Background Urinary tract infections represent one of the most frequent hospital and community-acquired infections with uropathogenic Escherichia coli (UPEC) being the main causative agent. The global increase in the emergence of multidrug-resistant (MDR) UPEC necessitates exploring novel approaches. Repurposing natural products as anti-quorum sensing (QS) agents to impede bacterial virulence is gaining momentum nowadays. Hence, this study investigates the anti-QS potentials of carvacrol, cinnamaldehyde, and eugenol against E. coli isolated from urine cultures of Egyptian patients. Results Antibiotic susceptibility testing was performed for 67 E. coli isolates and 94% of the isolates showed MDR phenotype. The usp gene was detected using PCR and accordingly, 45% of the isolates were categorized as UPEC. Phytochemicals, at their sub-inhibitory concentrations, inhibited the swimming and twitching motilities of UPEC isolates, with eugenol showing the highest inhibitory effect. The agents hindered the biofilm-forming ability of the tested isolates, at two temperature sets, 37 and 30 °C, where eugenol succeeded in significantly inhibiting the biofilm formation by > 50% at both investigated temperatures, as compared with untreated controls. The phytochemicals were shown to downregulate the expression of the QS gene (luxS) and critical genes related to motility, asserting their anti-QS potential. Further, the combinatory activity of the phytoproducts with five antibiotics was assessed by checkerboard assay. The addition of the phytoproducts significantly reduced the minimum inhibitory concentrations of the antibiotics and generated several synergistic or partially synergistic combinations, some of which have not been previously explored. Conclusions Overall, carvacrol, cinnamaldehyde, and eugenol could be repurposed as potential anti-QS agents, which preferentially reduce the QS-based communication and attenuate the cascades of gene expression, thus decreasing the production of virulence factors in UPEC, and eventually, subsiding their pathogenicity. Furthermore, the synergistic combinations of these agents with antibiotics might provide a new perspective to circumvent the side effects brought about by high antibiotic doses, thereby paving the way for overcoming antibiotic resistance
    corecore