91 research outputs found
Incorporating D2D to Current Cellular Communication System
A device-to-device (D2D) group works as relay nodes to aid the information delivery from a source to a destination in cellular communication network. Within this system, we propose a communication mechanism to aid traditional cellular communication and correspondingly borrow some channel resource from traditional cellular communication system for D2D communication. On one side, to aid cellular communication, we propose a modified Alamouti scheme which does not modify the operation at the base station. This makes our proposed scheme consistent with previous cellular communication system. On the other side, there are many competitive D2D groups that want to potentially utilize the borrowed channel resource from traditional cellular system for delivering their own information. We model this competition as a game and utilize game theory technique to solve this competition problem
Network-Coded Relaying in Multiuser Multicast D2D Network
D2D communication trades short-range communication for achieving high communication rate and short communication latency. Relay aided D2D communication can further tackle the problem of intermediate obstacles blocking the communication. In this work, multidevice multicast communication via a layer of parallel relay nodes is considered. Two relaying strategies, respectively, called the conventional relaying (CR) and network-coded relaying (NCR), are proposed. The throughput of these two schemes is analytically derived and evaluated through numerical study. Theoretically, NCR shows advantage over CR in twofold: one is higher throughput and the other is requiring less relay nodes and, hence, consuming less aggregate power. Numerical studies verify the analysis and show that the throughput performance gap between the two schemes increases significantly, actually exponentially with the number of devices
Qishen Yiqi dripping pills for chronic ischaemic heart failure:results of the CACT-IHF randomized clinical trial
10.1002/ehf2.12980ESC Heart Failure763881-389
Expression Patterns of Genes Involved in Sugar Metabolism and Accumulation during Apple Fruit Development
Both sorbitol and sucrose are imported into apple fruit from leaves. The metabolism of sorbitol and sucrose fuels fruit growth and development, and accumulation of sugars in fruit is central to the edible quality of apple. However, our understanding of the mechanisms controlling sugar metabolism and accumulation in apple remains quite limited. We identified members of various gene families encoding key enzymes or transporters involved in sugar metabolism and accumulation in apple fruit using homology searches and comparison of their expression patterns in different tissues, and analyzed the relationship of their transcripts with enzyme activities and sugar accumulation during fruit development. At the early stage of fruit development, the transcript levels of sorbitol dehydrogenase, cell wall invertase, neutral invertase, sucrose synthase, fructokinase and hexokinase are high, and the resulting high enzyme activities are responsible for the rapid utilization of the imported sorbitol and sucrose for fruit growth, with low levels of sugar accumulation. As the fruit continues to grow due to cell expansion, the transcript levels and activities of these enzymes are down-regulated, with concomitant accumulation of fructose and elevated transcript levels of tonoplast monosaccharide transporters (TMTs), MdTMT1 and MdTMT2; the excess carbon is converted into starch. At the late stage of fruit development, sucrose accumulation is enhanced, consistent with the elevated expression of sucrose-phosphate synthase (SPS), MdSPS5 and MdSPS6, and an increase in its total activity. Our data indicate that sugar metabolism and accumulation in apple fruit is developmentally regulated. This represents a comprehensive analysis of the genes involved in sugar metabolism and accumulation in apple, which will serve as a platform for further studies on the functions of these genes and subsequent manipulation of sugar metabolism and fruit quality traits related to carbohydrates
Large expert-curated database for benchmarking document similarity detection in biomedical literature search
Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe
Microstructure and Mechanical Properties of Fiber Laser Welding of Aluminum Alloy with Beam Oscillation
Laser welding with beam oscillation is applied to join aluminum alloy plates in butt configuration. The effects of beam oscillating patterns on the quality of welds are compared and analyzed. The results indicate that beam oscillation can improve the weld formation and microstructure of butt joints. The circular oscillating weld has the features of fine grain and uniformly dispersed dendrites in the strengthening phase, and the porosity inhibitory effect of circular oscillation is the most obvious. In addition, beam oscillation has few effects on the tensile strength of welds, but exerts an influence on the elongation of welds
- …