26 research outputs found

    Measurement of hand/handrim grip forces in two different one arm drive wheelchairs

    Get PDF
    Purpose. The aim of this study was to explore the total and regional grip forces in the hand when propelling two different manual one arm drive wheelchairs: the Neater Uni-wheelchair (NUW) and a foot steered Action3 wheelchair. Methods. 17 nondisabled users were randomly assigned to each wheelchair to drive around an indoor obstacle course. The Grip, a multiple sensor system taking continuous measurement of handgrip force, was attached to the propelling hand. Total grip force in each region of the hand and total grip force across the whole hand were calculated per user per wheelchair. Results. The Action3 with foot steering only generated significantly greater total grip force in straight running compared to the NUW and also in the fingers and thumb in straight running. Conclusions. The results suggest that the Action3 with foot steering generated greater grip forces which may infer a greater potential for repetitive strain injury in the upper limb. Further work is required to explore whether the difference in grip force is of clinical significance in a disabled population

    The histone deacetylase inhibitor valproic acid alters growth properties of renal cell carcinoma in vitro and in vivo

    Get PDF
    Histone deacetylase (HDAC) inhibitors represent a promising class of antineoplastic agents which affect tumour growth, differentiation and invasion. The effects of the HDAC inhibitor valproic acid (VPA) were tested in vitro and in vivo on pre-clinical renal cell carcinoma (RCC) models. Caki-1, KTC-26 or A498 cells were treated with various concentrations of VPA during in vitro cell proliferation 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays and to evaluate cell cycle manipulation. In vivo tumour growth was conducted in subcutaneous xenograft mouse models. The anti-tumoural potential of VPA combined with low-dosed interferon-α (IFN-α) was also investigated. VPA significantly and dose-dependently up-regulated histones H3 and H4 acetylation and caused growth arrest in RCC cells. VPA altered cell cycle regulating proteins, in particular CDK2, cyclin B, cyclin D3, p21 and Rb. In vivo, VPA significantly inhibited the growth of Caki-1 in subcutaneous xenografts, accompanied by a strong accumulation of p21 and bax in tissue specimens of VPA-treated animals. VPA–IFN-α combination markedly enhanced the effects of VPA monotherapy on RCC proliferation in vitro, but did not further enhance the anti-tumoural potential of VPA in vivo. VPA was found to have profound effects on RCC cell growth, lending support to the initiation of clinical testing of VPA for treating advanced RCC

    SMC complexes differentially compact mitotic chromosomes according to genomic context

    Get PDF
    Structural maintenance of chromosomes (SMC) protein complexes are key determinants of chromosome conformation. Using Hi-C and polymer modelling, we study how cohesin and condensin, two deeply conserved SMC complexes, organize chromosomes in the budding yeast Saccharomyces cerevisiae. The canonical role of cohesin is to co-align sister chromatids, while condensin generally compacts mitotic chromosomes. We find strikingly different roles for the two complexes in budding yeast mitosis. First, cohesin is responsible for compacting mitotic chromosome arms, independently of sister chromatid cohesion. Polymer simulations demonstrate that this role can be fully accounted for through cis-looping of chromatin. Second, condensin is generally dispensable for compaction along chromosome arms. Instead, it plays a targeted role compacting the rDNA proximal regions and promoting resolution of peri-centromeric regions. Our results argue that the conserved mechanism of SMC complexes is to form chromatin loops and that distinct SMC-dependent looping activities are selectively deployed to appropriately compact chromosomes

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Metacognition and entrepreneurial action: The mediating role of a strategic mindset on promoting effort and innovative behavior in frugal entrepreneurs

    No full text
    This study tests a situated metacognitive model of entrepreneurial action to highlight how action (or inaction) during the entrepreneurial process is influenced by both individual traits and one\u27s metacognitive ability, namely one\u27s strategic mindset. Integrating theory on resourcefulness and metacognition, we show how entrepreneurs who are more frugal tend to engage in less action in developing their new venture (i.e., enacting fewer innovative behaviors and putting forth less effort) as compared to less frugal entrepreneurs. However, we explain that this direct (negative) relationship is mediated by one\u27s strategic mindset, such that the indirect effect of frugality on both innovative behavior and level of effort enacted towards one\u27s new venture is positive (rather than negative). Overall, this study extends the construct of strategic mindset to the entrepreneurship literature and highlights the crucial role that metacognition can play regarding one\u27s socio-cognitive decision-making process and subsequent entrepreneurial behaviors

    Human cytomegalovirus infection alters PC3 prostate carcinoma cell adhesion to endothelial cells, extracellular matrix

    No full text
    The genome, antigens of human cytomegalovirus (HCMV) are frequently found in prostatic carcinoma. However, whether this infection is causative or is an epiphenomenon is not clear. We therefore investigated the ability of HCMV to promote metastatic processes, defined by tumor cell adhesion to the endothelium, extracellular matrix proteins. Experiments were based on the human prostate tumor cell line PC3, either infected with the HCMV strain Hi (HCMVHi) or transfected with cDNA encoding the HCMV-specific immediate early protein IEA1 (UL123) or IEA2 (UL122). HCMVHi upregulated PC3 adhesion to the endothelium, to the extracellular matrix proteins collagen, laminin, fibronectin. The process was accompanied by enhancement of β1-integrin surface expression, elevated levels of integrin-linked kinase, phosphorylation of focal adhesion kinase. IEA1 or IEA2 did not modulate PC3 adhesion or β1-integrin expression. Based on this in vitro model, we postulate a direct association between HCMV infection, prostate tumor transmigration, which is not dependent on IEA proteins. Integrin overexpression, combined with the modulation of integrin-dependent signalling, seems to be, at least in part, responsible for a more invasive PC3Hi tumor cell phenotype. Elevated levels of c-myc found in IEA1-transfected or IEA2-transfected PC3 cell populations might promote further carcinogenic processes through accelerated cell proliferation

    Human Cytomegalovirus Infection Alters PC3 Prostate Carcinoma Cell Adhesion to Endothelial Cells and Extracellular Matrix

    No full text
    The genome and antigens of human cytomegalovirus (HCMV) are frequently found in prostatic carcinoma. However, whether this infection is causative or is an epiphenomenon is not clear. We therefore investigated the ability of HCMV to promote metastatic processes, defined by tumor cell adhesion to the endothelium and extracellular matrix proteins. Experiments were based on the human prostate tumor cell line PC3, either infected with the HCMV strain Hi (HCMV(Hi)) or transfected with cDNA encoding the HCMV-specific immediate early protein IEA1 (UL123) or IEA2 (UL122). HCMV(Hi) upregulated PC3 adhesion to the endothelium and to the extracellular matrix proteins collagen, laminin, and fibronectin. The process was accompanied by enhancement of β(1)-integrin surface expression, elevated levels of integrin-linked kinase, and phosphorylation of focal adhesion kinase. IEA1 or IEA2 did not modulate PC3 adhesion or β(1)-integrin expression. Based on this in vitro model, we postulate a direct association between HCMV infection and prostate tumor transmigration, which is not dependent on IEA proteins. Integrin overexpression, combined with the modulation of integrin-dependent signalling, seems to be, at least in part, responsible for a more invasive PC3(Hi) tumor cell phenotype. Elevated levels of c-myc found in IEA1-transfected or IEA2-transfected PC3 cell populations might promote further carcinogenic processes through accelerated cell proliferation
    corecore