50 research outputs found

    immunizing against breast cancer a new swing for an old sword

    Get PDF
    Summary Therapeutic potential of vaccination has been explored in many clinical trials involving patients with breast cancer. A large variety of cancer immunogens have been tested. The majority of clinical vaccination studies have been carried out in patients with metastatic breast cancer, characterized by extremely aggressive malignant tumors, resistant to all standard cytotoxic treatments and with longest-lasting disease. With active specific immunotherapy, tumor-associated antigens coupled to appropriate adjuvant can elicit a powerful antitumor responses. The potential advantages of therapeutic cancer vaccines are that they can augment an established immunogenic response to the tumor (which is generally weak in breast cancer), they target specific tumor antigens (although there are few), they are potentially non-toxic, they can be combined with conventional therapies and/or other immunotherapies, and they elicit immunologic memory to prevent recurrence of the tumor. It is unclear whether therapeutic vaccines for cancer prolong survival. Data of clinical activity have been observed by using vaccines targeting HER-2/neu protein, human telomerase reverse transcriptase, carcinoembryonic antigen (CEA), and carbohydrate antigen given after stem cell rescue. A better understanding of the relation between innate and adaptive immune responses, and of the immune escape mechanisms employed by tumor cells, the discovery of mechanisms underlying immunological tolerance, and acknowledgment of the importance of both cell-mediated and humoral adaptive immunity for the control of tumour growth are necessary for leading to a more comprehensive immunotherapeutic approach in breast cancer

    developing an effective breast cancer vaccine challenges to achieving sterile immunity versus resetting equilibrium

    Get PDF
    Abstract Introduction Evading immune destruction is an emerging hallmark of cancer. Immunotherapy of cancer is categorized as either specific stimulation of the immune system by active immunization, with cancer vaccines, or passive transfer of humor or cellular materials, such as, tumor specific antibodies (including immunomodulators) or adoptive cell therapy that inhibit the function of- or directly kill tumor cells. Modulation of immune response in cancer patients is the result of a balanced activity of T regulators and T effector cells. Methods and results We will present the current information and the prospects for the future of immunotherapy in patients with breast cancer including tumor antigens for vaccines and targets for monoclonal antibodies and adoptive T-cell therapy. Discussion Active immunotherapy in breast cancer and its implementation into clinical trials has largely been a frustrating experience in the last decades. After many years of controversy, the concept that the immune system regulates cancer development is experiencing a new resurgence. It is clear that the cancer immunosurveillance process indeed exists and potentially acts as an extrinsic tumor suppressor. It has been also clear that the immune system can facilitate tumor progression by sculpting the immunogenic phenotype of tumors as they develop. Cancer immunoediting represents a refinement of the cancer immunosurveillance hypothesis and resumes the complex interaction between tumor and immune system into three phases: elimination, equilibrium, and escape. Conclusion What do we know about tumor immunogenicity and how might we therapeutically improve tumor immunogenicity? The first vaccine and the first immunomodulating agent were recently approved by the US Food and Drug Administration (FDA) for the treatment of prostate cancer (sipuleucel-T) and melanoma (ipilimumab), respectively. The success of future immunotherapy strategies will depend on the identification of additional immunogenic antigens that can serve as the best tumor-rejection targets. Therapeutic success will depend on developing the best antigen delivery systems and on the elucidation of the entire network of immune signalingsignaling pathways that regulate immune responses in the tumor microenvironment

    Transmission of Hemagglutinin D222G Mutant Strain of Pandemic (H1N1) 2009 Virus

    Get PDF
    A pandemic (H1N1) 2009 virus strain carrying the D222G mutation was identified in a severely ill man and was transmitted to a household contact. Only mild illness developed in the contact, despite his obesity and diabetes. The isolated virus reacted fully with an antiserum against the pandemic vaccine strain

    Therapeutic Induction of Energy Metabolism Reduces Neural Tissue Damage and Increases Microglia Activation in Severe Spinal Cord Injury

    Get PDF
    : Neural tissue has high metabolic requirements. Following spinal cord injury (SCI), the damaged, tissue suffers from a severe metabolic impairment, which aggravates axonal degeneration and, neuronal loss. Impaired cellular energetic, tricarboxylic acid (TCA) cycle and oxidative, phosphorylation metabolism in neuronal cells has been demonstrated to be a major cause of neural tissue death and regeneration failure following SCI. Therefore, rewiring the spinal cord cell metabolism may be an innovative therapeutic strategy for the treatment of SCI. In this study, we evaluated the therapeutic effect of the recovery of oxidative metabolism in a mouse model of severe contusive SCI. Oral administration of TCA cycle intermediates, co-factors, essential amino acids, and branched-chain amino acids was started 3 days post-injury and continued until the end of the experimental procedures. Metabolomic, immunohistological, and biochemical analyses were performed on the injured spinal cord sections. Administration of metabolic precursors enhanced spinal cord oxidative metabolism. In line with this metabolic shift, we observed the activation of the mTORC1 anabolic pathway, the increase in mitochondrial mass, and ROS defense which effectively prevented the injury-induced neural cell apoptosis in treated animals. Consistently, we found more choline acetyltransferase (ChAT)-expressing motor neurons and increased neurofilament positive corticospinal axons in the spinal cord parenchyma of the treated mice. Interestingly, oral administration of the metabolic precursors increased the number of activated microglia expressing the CD206 marker suggestive of a, pro-resolutive, M2-like phenotype. These molecular and histological modifications observed in treated animals ultimately led to a significant, although partial, improvement of the motor functions. Our data demonstrate that rewiring the cellular metabolism can represent an effective strategy to treat SCI

    Biopsy confirmation of metastatic sites in breast cancer patients:clinical impact and future perspectives

    Get PDF
    Determination of hormone receptor (estrogen receptor and progesterone receptor) and human epidermal growth factor receptor 2 status in the primary tumor is clinically relevant to define breast cancer subtypes, clinical outcome,and the choice of therapy. Retrospective and prospective studies suggest that there is substantial discordance in receptor status between primary and recurrent breast cancer. Despite this evidence and current recommendations,the acquisition of tissue from metastatic deposits is not routine practice. As a consequence, therapeutic decisions for treatment in the metastatic setting are based on the features of the primary tumor. Reasons for this attitude include the invasiveness of the procedure and the unreliable outcome of biopsy, in particular for biopsies of lesions at complex visceral sites. Improvements in interventional radiology techniques mean that most metastatic sites are now accessible by minimally invasive methods, including surgery. In our opinion, since biopsies are diagnostic and changes in biological features between the primary and secondary tumors can occur, the routine biopsy of metastatic disease needs to be performed. In this review, we discuss the rationale for biopsy of suspected breast cancer metastases, review issues and caveats surrounding discordance of biomarker status between primary and metastatic tumors, and provide insights for deciding when to perform biopsy of suspected metastases and which one (s) to biopsy. We also speculate on the future translational implications for biopsy of suspected metastatic lesions in the context of clinical trials and the establishment of bio-banks of biopsy material taken from metastatic sites. We believe that such bio-banks will be important for exploring mechanisms of metastasis. In the future,advances in targeted therapy will depend on the availability of metastatic tissue

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    Stable Cellular Senescence Is Associated with Persistent DDR Activation

    No full text
    <div><p>The DNA damage response (DDR) is activated upon DNA damage generation to promote DNA repair and inhibit cell cycle progression in the presence of a lesion. Cellular senescence is a permanent cell cycle arrest characterized by persistent DDR activation. However, some reports suggest that DDR activation is a feature only of early cellular senescence that is then lost with time. This challenges the hypothesis that cellular senescence is caused by persistent DDR activation. To address this issue, we studied DDR activation dynamics in senescent cells. Here we show that normal human fibroblasts retain DDR markers months after replicative senescence establishment. Consistently, human fibroblasts from healthy aged donors display markers of DDR activation even three years in culture after entry into replicative cellular senescence. However, by extending our analyses to different human cell strains, we also observed an apparent DDR loss with time following entry into cellular senescence. This though correlates with the inability of these cell strains to survive in culture upon replicative or irradiation-induced cellular senescence. We propose a model to reconcile these results. Cell strains not suffering the prolonged <i>in vitro</i> culture stress retain robust DDR activation that persists for years, indicating that under physiological conditions persistent DDR is causally involved in senescence establishment and maintenance. However, cell strains unable to maintain cell viability <i>in vitro,</i> due to their inability to cope with prolonged cell culture-associated stress, show an only-apparent reduction in DDR foci which is in fact due to selective loss of the most damaged cells.</p></div
    corecore