165 research outputs found

    Large Asymmetric Hypertrophy of Rectus Abdominis Muscle in Professional Tennis Players

    Get PDF
    Purpose: To determine the volume and degree of asymmetry of the musculus rectus abdominis (RA) in professional tennis players. Methods: The volume of the RA was determined using magnetic resonance imaging (MRI) in 8 professional male tennis players and 6 non-active male control subjects. Results: Tennis players had 58 % greater RA volume than controls (P = 0.01), due to hypertrophy of both the dominant (34% greater volume, P = 0.02) and non-dominant (82 % greater volume, P = 0.01) sides, after accounting for age, the length of the RA muscle and body mass index (BMI) as covariates. In tennis players, there was a marked asymmetry in the development of the RA, which volume was 35 % greater in the non-dominant compared to the dominant side (P,0.001). In contrast, no sideto-side difference in RA volume was observed in the controls (P = 0.75). The degree of side-to-side asymmetry increased linearly from the first lumbar disc to the pubic symphysis (r = 0.97, P,0.001). Conclusions: Professional tennis is associated with marked hypertrophy of the musculus rectus abdominis, which achieves a volume that is 58 % greater than in non-active controls. Rectus abdominis hypertrophy is more marked in the non-dominant than in the dominant side, particularly in the more distal regions. Our study supports the concept that humans can differentially recruit both rectus abdominis but also the upper and lower regions of each muscle. It remains to b

    Alignment of the stellar spin with the orbits of a three-planet system

    Get PDF
    The Sun’s equator and the planets’ orbital planes are nearly aligned, which is presumably a consequence of their formation from a single spinning gaseous disk. For exoplanetary systems this well-aligned configuration is not guaranteed: dynamical interactions may tilt planetary orbits, or stars may be misaligned with the protoplanetary disk through chaotic accretion1 , magnetic interactions[superscript 2] or torques from neighbouring stars. Indeed, isolated ‘hot Jupiters’ are often misaligned and even orbiting retrograde[superscript 3, 4]. Here we report an analysis of transits of planets over starspots[superscript 5, 6, 7] on the Sun-like star Kepler-30 (ref. 8), and show that the orbits of its three planets are aligned with the stellar equator. Furthermore, the orbits are aligned with one another to within a few degrees. This configuration is similar to that of our Solar System, and contrasts with the isolated hot Jupiters. The orderly alignment seen in the Kepler-30 system suggests that high obliquities are confined to systems that experienced disruptive dynamical interactions. Should this be corroborated by observations of other coplanar multi-planet systems, then star–disk misalignments would be ruled out as the explanation for the high obliquities of hot Jupiters, and dynamical interactions would be implicated as the origin of hot Jupiters.United States. National Aeronautics and Space Administration (Science MissionDirectorate

    Chapter 3: Pathophysiology

    Get PDF
    The hallmark pathophysiologic feature of dilated cardiomyopathy is systolic dysfunction. Several pathogenetic mechanisms appear to be operative. These include increased hemodynamic overload, ventricular remodeling, excessive neurohumoral stimulation, abnormal myocyte calcium cycling, excessive or inadequate proliferation of the extracellular matrix, accelerated apoptosis, and genetic mutations. Although beneficial in the early stages of heart failure, these compensatory mechanisms eventually lead to a vicious cycle of worsening heart failure. Genetic causes account for 30\u201340% of DCM and involve genes that encode a heterogeneous group of molecules that participate in force generation, force transmission, sarcomere integrity, cytoskeletal and nuclear architecture, electrolyte homeostasis, mitochondrial function, and transcription. Additional research will improve our understanding of the complex and longitudinal molecular changes that lead from gene mutation to clinical expressio

    Assessment of a primary and tertiary care integrated management model for chronic obstructive pulmonary disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The diagnosis and treatment of patients with chronic obstructive pulmonary disease (COPD) in Spain continues to present challenges, and problems are exacerbated when there is a lack of coordinated follow-up between levels of care. This paper sets out the protocol for assessing the impact of an integrated management model for the care of patients with COPD. The new model will be evaluated in terms of 1) improvement in the rational utilization of health-care services and 2) benefits reflected in improved health status and quality of life for patients.</p> <p>Methods/Design</p> <p>A quasi-experimental study of the effectiveness of a COPD management model called COPD PROCESS. The patients in the study cohorts will be residents of neighborhoods served by two referral hospitals in Barcelona, Spain. One area comprises the intervention group (n = 32,248 patients) and the other the control group (n = 32,114 patients). The study will include pre- and post-intervention assessment 18 months after the program goes into effect. Analyses will be on two datasets: clinical and administrative data available for all patients, and clinical assessment information for a cohort of 440 patients sampled randomly from the intervention and control areas. The main endpoints will be the hospitalization rates in the two health-care areas and quality-of-life measures in the two cohorts.</p> <p>Discussion</p> <p>The COPD PROCESS model foresees the integrated multidisciplinary management of interventions at different levels of the health-care system through coordinated routine clinical practice. It will put into practice diagnostic and treatment procedures that are based on current evidence, multidisciplinary consensus, and efficient use of available resources. Care pathways in this model are defined in terms of patient characteristics, level of disease severity and the presence or absence of exacerbation. The protocol covers the full range of care from primary prevention to treatment of complex cases.</p

    The Neurokinin 1 Receptor Antagonist, Ezlopitant, Reduces Appetitive Responding for Sucrose and Ethanol

    Get PDF
    Abstract Background: The current obesity epidemic is thought to be partly driven by over-consumption of sugar-sweetened diets and soft drinks. Loss-of-control over eating and addiction to drugs of abuse share overlapping brain mechanisms including changes in motivational drive, such that stimuli that are often no longer ‘liked’ are still intensely ‘wanted’ [7,8]. The neurokinin 1 (NK1) receptor system has been implicated in both learned appetitive behaviors and addiction to alcohol and opioids; however, its role in natural reward seeking remains unknown. Methodology/Principal Findings: We sought to determine whether the NK1-receptor system plays a role in the reinforcing properties of sucrose using a novel selective and clinically safe NK1-receptor antagonist, ezlopitant (CJ-11,974), in three animal models of sucrose consumption and seeking. Furthermore, we compared the effect of ezlopitant on ethanol consumption and seeking in rodents. The NK1-receptor antagonist, ezlopitant decreased appetitive responding for sucrose more potently than for ethanol using an operant self-administration protocol without affecting general locomotor activity. To further evaluate the selectivity of the NK1-receptor antagonist in decreasing consumption of sweetened solutions, we compared the effects of ezlopitant on water, saccharin-, and sodium chloride (NaCl) solution consumption. Ezlopitant decreased intake of saccharin but had no effect on water or salty solution consumption. Conclusions/Significance: The present study indicates that the NK1-receptor may be a part of a common pathway regulating the self-administration, motivational and reinforcing aspects of sweetened solutions, regardless of caloric value, and those of substances of abuse. Additionally, these results indicate that the NK1-receptor system may serve as a therapeutic target for obesity induced by over-consumption of natural reinforcers

    QCD and strongly coupled gauge theories : challenges and perspectives

    Get PDF
    We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many research streams which flow into and out of QCD, as well as a vision for future developments.Peer reviewe

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A

    Get PDF
    On 2017 August 17, the gravitational-wave event GW170817 was observed by the Advanced LIGO and Virgo detectors, and the gamma-ray burst (GRB) GRB 170817A was observed independently by the Fermi Gamma-ray Burst Monitor, and the Anti-Coincidence Shield for the Spectrometer for the International Gamma-Ray Astrophysics Laboratory. The probability of the near-simultaneous temporal and spatial observation of GRB 170817A and GW170817 occurring by chance is 5.0×1085.0\times {10}^{-8}. We therefore confirm binary neutron star mergers as a progenitor of short GRBs. The association of GW170817 and GRB 170817A provides new insight into fundamental physics and the origin of short GRBs. We use the observed time delay of (+1.74±0.05)s(+1.74\pm 0.05)\,{\rm{s}} between GRB 170817A and GW170817 to: (i) constrain the difference between the speed of gravity and the speed of light to be between 3×1015-3\times {10}^{-15} and +7×1016+7\times {10}^{-16} times the speed of light, (ii) place new bounds on the violation of Lorentz invariance, (iii) present a new test of the equivalence principle by constraining the Shapiro delay between gravitational and electromagnetic radiation. We also use the time delay to constrain the size and bulk Lorentz factor of the region emitting the gamma-rays. GRB 170817A is the closest short GRB with a known distance, but is between 2 and 6 orders of magnitude less energetic than other bursts with measured redshift. A new generation of gamma-ray detectors, and subthreshold searches in existing detectors, will be essential to detect similar short bursts at greater distances. Finally, we predict a joint detection rate for the Fermi Gamma-ray Burst Monitor and the Advanced LIGO and Virgo detectors of 0.1-1.4 per year during the 2018-2019 observing run and 0.3-1.7 per year at design sensitivity
    corecore