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Abstract The graph bisection problem is the problem of partitioning the vertex set of a
graph into two sets of given sizes such that the sum of weights of edges joining these two
sets is optimized. We present a semidefinite programming relaxation for the graph bisection
problem with a matrix variable of order n—the number of vertices of the graph—that is
equivalent to the currently strongest semidefinite programming relaxation obtained by using
vector lifting. The reduction in the size of the matrix variable enables us to impose additional
valid inequalities to the relaxation in order to further strengthen it. The numerical results
confirm that our simplified and strengthened semidefinite relaxation provides the currently
strongest bound for the graph bisection problem in reasonable time.

Keywords Graph bisection ·Graph partition · Semidefinite programming · Boolean quadric
polytope

1 Introduction

The graph bisection problem (GBP) is the problem of dividing the vertices of a graph into two
sets of specified sizes such that the total weight of edges joining different sets is optimized.
The GBP is an NP-hard combinatorial optimization problem, see Garey et al. (1976). It
has many applications such as VLSI design (Lengauer 1990), parallel computing (Biswas
et al. 2000; Hendrickson and Kolda 2000; Simon 1991), network partitioning (Fiduccia and
Mattheyses 1982; Sanchis 1989), and floor planing (Dai and Kuh 1987). Graph partitioning
also plays a role in machine learning (see e.g., Li et al. 2015) and data analysis (see e.g.,
Pirim et al. 2012).

There are several SDP relaxations for the GBP with matrix variables of different orders.
In particular, there are relaxations whose matrices have orders n, 2n, and 2n + 1, where n is
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the order of the graph. An SDP relaxation with a matrix variable of order n is introduced by
Karisch et al. (2000). The same relaxation is used by Feige and Langberg (2001), and Han
et al. (2002) to derive approximation algorithms for the GBP. Another SDP relaxation with a
matrix variable of order n that is derived from an SDP relaxation for the more general graph
partition problem is introduced in Sotirov (2014). In Sotirov (2014) it is also proven that the
above mentioned SDP relaxations of order n are equivalent.

Wolkowicz and Zhao (1999) derived an SDP relaxation with a matrix variable of order
2n + 1. This SDP relaxation with additional nonnegativity constraints dominates the SDP
relaxations with matrix variables of order n, see De Klerk et al. (2012); Sotirov (2014).

The GBP can be seen as a special case of the quadratic assignment problem (QAP). De
Klerk et al. (2012) exploited this to derive an SDP relaxation for the GBP from an SDP
relaxation for the QAP, which however reduces to a much smaller semidefinite program than
the original QAP relaxation (see also De Klerk et al. 2012). In particular that relaxation
contains matrix variables of orders n and 2n. In Sotirov (2014), it is proven that the QAP-
based SDP relaxation for the GBP is equivalent to the strongest SDP relaxation, that is the
SDP relaxation with nonnegativity constraints from Wolkowicz and Zhao (1999).

For specific families of (symmetric) graphs, De Klerk et al. (2012) improved the QAP-
based SDP relaxation for the GBP by adding a constraint that fixes one vertex of the graph.
Finally, in van Dam and Sotirov (2015) the SDP relaxation for the GBP from De Klerk
et al. (2012) was further strengthened by adding two constraints that correspond to assigning
two vertices of the graph to different parts of the partition. Both fixing-based strengthening
perform well on highly symmetric graphs.

In this paper,we present anSDP relaxation for the bisection problemwhosematrix variable
is of order n. Our relaxation is equivalent to the strongest SDP relaxation for the GBP, that is
the strongestWolkowicz andZhao (1999) relaxation. The newSDP relaxation exploits the fact
that the matrix variables corresponding to the two parts in the bisection are related. Further,
we consider adding the facet defining inequalities of the boolean quadric polytope to our
relaxation. We also show that a large subset of the facet defining inequalities are redundant in
the relaxation from Wolkowicz and Zhao (1999). The strengthened SDP bound outperforms
all previously considered SDP bounds, including those tailored for highly symmetric graphs.

The paper is structured as follows. In Sect. 2 we provide an integer programming for-
mulation of the problem, and in Sect. 3 an overview is given of the known SDP relaxations
for the graph bisection problem. In Sect. 4 we present our SDP relaxation and prove that it
is equivalent to the strongest SDP relaxation from Wolkowicz and Zhao (1999). We further
suggest how to improve our relaxation. Finally, in Sect. 5 we present numerical results.

2 The graph bisection problem

In this section we formulate the minimum graph bisection problem as an integer optimization
problem. Let G = (V, E) be an undirected graph with vertex set V , where |V | = n and edge
set E . The goal is to find a partition of the vertex set into two disjoint subsets S1 and S2 of
specified sizes m1 ≥ m2 > 0, m1 + m2 = n such that the sum of weights of edges joining
S1 and S2 is minimized. If m1 = m2 then one refers to the associated problem as the graph
equipartition problem. We consider here only the case that m1 > m2. For detailed analysis
of the SDP relaxations for the graph equipartition problem, see Sotirov (2012).

Let us denote by A the adjacency matrix of G. For a given partition of the graph G into
two subsets, let Z = (zi, j ) be the n × 2 matrix defined by
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zi, j :=
{
1 if i ∈ S j

0 otherwise
i = 1, . . . , n, j = 1, 2.

The j th column of Z is the characteristic vector of S j . The cut of the partition, which is the
sum of weights of edges joining different sets, is equal to:

1

2
tr(A(J − Z ZT)) = 1

2
tr(LZ ZT),

where L = Diag(Ae) − A is the Laplacian matrix of the graph, and J (resp. e) the all-ones
matrix (resp. vector). Therefore, the minimum GBP problem can be formulated as follows

min

{
1

2
tr(LZ ZT) : Ze = e, ZTe = m, zi, j ∈ {0, 1}, ∀i, j

}
, (1)

where m = (m1,m2)
T.

3 Overview of SDP relaxations

In this sectionwe provide an overview of existing SDP relaxations for theGBP. The following
SDP relaxation is derived in Sotirov (2014)

min 1
2 tr(LX)

s.t. diag(X) = e, tr(J X) = m2
1 + m2

2

2X − J � 0, X ∈ Sn,
(2)

where the ‘diag’ operator maps an n × n matrix to the n-vector given by its diagonal, and
Sn denotes the space of n × n symmetric matrices. Nonnegativity constraints on the matrix
variable in (2) are redundant. This follows from diag(X) = e and 2X − J � 0, see van Dam
and Sotirov (2015) for details. The SDP relaxation (2) is equivalent to the SDP relaxation
with a matrix variable of order n from Karisch et al. (2000).

The following SDP relaxation for the GBP is derived in Wolkowicz and Zhao (1999):

min 1
2 tr(L(Y11 + Y22))

s.t. tr(Yii ) = mi , tr(JYii ) = m2
i , i = 1, 2

diag(Y12) = 0, trJ (Y12 + Y T
12) = 2m1m2

Y =
(
Y11 Y12

Y T
12 Y22

)
y = diag(Y ), Y − yyT � 0, Y ≥ 0,

(3)

where Y ∈ S2n . From now on, we assume that matrices of order 2n have the block structure
as given above.

Although the nonnegativity constraints were not included in the relaxation fromWolkow-
icz and Zhao (1999), the authors mentioned that it would be worth adding them. The SDP
relaxation (3) does not have strictly feasible solutions. From a computational point of view,
this is an indication that the model may be difficult to solve directly as it is. Therefore,
Wolkowicz and Zhao (1999) derive the Slater feasible version of the relaxation whose matrix
variable is of order n. However, that model includes multiplications with projection matrices
of size (2n+1)×n. The above relaxation can be further strengthened by adding the following
inequalities
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0 ≤ yi, j ≤ yi,i (4)

yi,i + y j, j ≤ 1 + yi, j (5)

yi,k + y j,k ≤ yk,k + yi, j (6)

yi,i + y j, j + yk,k ≤ yi, j + yi,k + y j,k + 1, (7)

where Y = (yi, j ) and 1 ≤ i, j, k ≤ 2n, i �= j , i �= k, j �= k. The inequalities (4)–(7) are
facet defining inequalities of the boolean quadric polytope (BQP), see Padberg (1989).

Wolkowicz andZhao (1999) prove that for amatrixY that is feasible for the SDP relaxation
(3) the following is satisfied:

Y11 + Y12 = y1e
T, Y T

12 + Y22 = y2e
T, y1 + y2 = e, Yii e = mi yi (i = 1, 2), (8)

where yi = diag(Yii ). From here it follows that for given Y11 and y1 the above equations
uniquely determine Y12, Y22 and y2. We will exploit this to derive the simplified SDP relax-
ation in the following section.

Extensive numerical results in Sotirov (2014) show that (3) provides the strongest SDP
relaxation for the GBP. To the best of our knowledge, we are not aware of numerical test that
involve the SDP relaxation (3) and the inequalities (4)–(7).

Finally, we prove that the optimal value of the SDP relaxation (3) is at least that of the
relaxation (2).

Proposition 1 Let m1 > m2 and m1 +m2 = n. Then the SDP relaxation (3) dominates the
SDP relaxation (2).

Proof Let Yi j and yi (i, j = 1, 2) be feasible for (3), and set X = Y11 +Y22. Now, tr(J X) =
m2

1+m2
2 and diag(X) = e follow from feasibility ofYii (i = 1, 2) and (8). The SDP constraint

follows from summing

(
Yii yi

yTi 1

)
� 0, i = 1, 2. �	

The similar result is proven in De Klerk et al. (2012). In particular, it was proven that the
QAP-based SDP relaxation for the GBP dominates the SDP relaxation from Karisch et al.
(2000). However, the QAP-based SDP relaxation for the GBP is equivalent to (3), and the
relaxation from Karisch et al. (2000) to (2), see Sotirov (2014).

4 A simplified SDP relaxation

In this section we derive an SDP relaxation for the GBPwith a matrix variable of order n, and
prove that it is equivalent to the best known SDP relaxation for general graphs that is derived
in Wolkowicz and Zhao (1999). To derive the relaxation we exploit the fact that the variables
associated to the two sets in the bisection are related. Namely, variables coming from the
assignment to the second set are redundant in the assignment constraints. It is surprising that
this observation was not earlier exploited in the context of the GBP. However, a similar idea
was used in Rendl and Sotirov (2016) to derive an SDP relaxation for the vertex separator
problem.

Our observation lead us to the following SDP relaxation:

min 1
2 tr(L(2X + J − xeT − exT))

s.t. xTe = m1, tr(J X) = m2
1, Xe = m1x

X ≥ 0, xeT − X ≥ 0, J + X − xeT − exT ≥ 0

X � 0, diag(X) = x, X ∈ Sn .

(9)
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All equality constraints in (9) are related to the variables associated to the set S1. The con-
straints X ≥ 0 ensure that the matrix variable corresponding to S1 is nonnegative, while
constraints xeT − X ≥ 0, J + X − xeT − exT ≥ 0 do the same for the slack matrix variables.

One may wish to replace the semidefinite constraint X � 0 from (9) with the in general
stronger constraint X − xxT � 0. However, from the following result it follows that in our
case those two semidefinite constraints are equivalent.

Proposition 2 (Gijswijt 2005, Proposition 7) Let X be a symmetric matrix of order n such
that c · diag(X) = Xe for some c ∈ R, and

X̄ =
(

1 diag(X)T

diag(X) X

)
.

Then the following are equivalent:

(i) X̄ is positive semidefinite,
(ii) X is positive semidefinite and tr(J X) ≥ (trX)2.

The equivalence of the two SDP constraints follows from the fact that for a feasible X for
(9) one has tr(J X) = (trX)2 = m2

1 and Xe = m1diag(X). We prove now our main result.

Theorem 3 Let m1 + m2 = n, m1 > m2. The SDP relaxations (3) and (9) are equivalent.

Proof Let X be feasible for (9) and x = diag(X). We construct a feasible Y , y = diag(Y )
for (3) in the following way. Define y1 := x , y2 := e − x , yT := (yT1 , y

T
2 ), matrices

Y11 := X, Y22 := J + X − xeT − exT, Y12 := xeT − X,

and collect all blocks into the matrix

Y =
(
Y11 Y12

Y T
12 Y22

)
=

(
X xeT − X

exT − X J + X − xeT − exT

)
.

Now, we first prove that(
X xeT − X

exT − X J + X − xeT − exT

)
−

(
xxT x(e − x)T

(e − x)xT (e − x)(e − x)T

)
� 0.

To show this, we rewrite the left hand side of the matrix inequality above as it follows(
X − xxT xxT − X

xxT − X X − xxT

)
.

Now, for arbitrary vectors z1, z2 ∈ Rn we have

(zT1 , z
T
2 )

(
X − xxT xxT − X

xxT − X X − xxT

) (
z1
z2

)
= (z1 − z2)

T(X − xxT)(z1 − z2) ≥ 0,

from where it follows the claim. Let us now verify tr(JY22) = m2
2. Namely,

tr(JY22) = tr(J (J + X − xeT − exT)) = n2 + m2
1 − 2nm1 = m2

2.

Similarly, the remaining constraints from (3) can be verified.
Conversely, let Y be feasible for (3). We set X = Y11 and x = diag(Y11). Since every

feasiblematrixY ∈ S2n for (3) satisfies also (8), feasibility of X follows by direct verification.
Finally, it is not difficult to check that the objectives coincide for any pair of feasible solutions
(Y, X). �	
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Note that the result from the previous theorem is also valid when m1 = m2. However, it
was proven in Sotirov (2012) that all known vector and matrix lifting based SDP relaxations
for the k-equipartition problem (k ≥ 2) are equivalent.

It is not difficult to verify that the SDP relaxation (9) has a strictly feasible point. Indeed,
the following matrix is feasible for (9) and is positive definite:

X̂ = m1

n
I + m1(m1 − 1)

n(n − 1)
(J − I ),

where I is the identity matrix. Note that X̂ has two distinct eigenvalues, i.e., m1(n−m1)
n(n−1) with

multiplicity n − 1, and
m2
1
n with multiplicity one.

The following result is a direct consequence of Theorem 3.

Corollary 4 The SDP relaxation (3) without nonnegativity constraints is equivalent to the
SDP relaxation (9) without nonnegativity constraints, i.e.,

min 1
2 tr(L(2X + J − xeT − exT))

s.t. xTe = m1, tr(J X) = m2
1, Xe = m1x

X � 0, diag(X) = x, X ∈ Sn .
In order to improve the SDP relaxation (9) we can add the facet defining inequalities of the
boolean quadric polytope, see Padberg (1989). We first note that the inequality constraints
X ≥ 0, xeT − X ≥ 0, and J + X − xeT − exT ≥ 0 from the SDP relaxation (9) are exactly
the following BQP constraints

0 ≤ xi, j ≤ xi,i , xi,i + x j, j ≤ 1 + xi, j , 1 ≤ i, j ≤ n, i �= j.

Note also that the SDP relaxation fromCorollary 4 differs from the SDP relaxation (9) exactly
for those constraints. Thus, in order to strengthen the SDP relaxation (9) one can add the
following BQP constraints:

xi,k + x j,k ≤ xk,k + xi, j , xi,i + x j, j + xk,k ≤ xi, j + xi,k + x j,k + 1, (10)

for 1 ≤ i, j, k ≤ n, i �= j , i �= k, j �= k.

Let us now show that the bound obtained by solving the SDP relaxation (3) with addi-
tional BQP constraint (4)–(7) is equal to the bound obtained by solving (9) with additional
constraints (10). We first prove that (4)–(5) are redundant for feasible matrices from (3).

Lemma 5 Let Y = (yi, j ) ∈ S2n be feasible for (3). Then, the following BQP inequalities
are satisfied:

0 ≤ yi, j ≤ yi,i , yi,i + y j, j ≤ 1 + yi, j ,

for 1 ≤ i, j ≤ 2n, i �= j .

Proof The constraints 0 ≤ yi, j ≤ yi,i (1 ≤ i, j ≤ 2n) follow trivially from (8) and Y ≥ 0.
To show that the following inequalities

yi,i + y j, j ≤ 1 + yi, j , 1 ≤ i, j ≤ n, i �= j,

are satisfied, it is instructive to look at (8). From (8) we have that Y22 = J+Y11− y1eT−eyT1 .
Now, from Y22 ≥ 0 it follows that J + Y11 ≥ y1eT + eyT1 , from where it is clear that the
above constraints are satisfied. To verify the inequalities

yi,i + y j, j ≤ 1 + yi, j , 1 ≤ i ≤ n, n + 1 ≤ j ≤ 2n,
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we rewrite y j, j (n + 1 ≤ j ≤ 2n) in the terms of the elements from the first block by using
Y22 = J + Y11 − y1eT − eyT1 . Similarly, we rewrite yi, j (1 ≤ i ≤ n, n + 1 ≤ j ≤ 2n)
using Y12 = y1eT − Y11. Now, the above inequalities reduce to the redundant constraints
yk,k ≥ yk,i (1 ≤ i, k ≤ n).

Similarly, one can show that yi,i+y j, j ≤ 1+yi, j forn+1 ≤ i, j ≤ 2n, andn+1 ≤ i ≤ 2n,
1 ≤ j ≤ n. �	

In the previous lemma we exploit the fact that a feasible matrix for (3) satisfies (8). By
using the same equations, we can show that for a feasible Y from (3) many of the constraints
(6)–(7) are equivalent. In particular, let Y = (yi, j ) ∈ S2n be feasible for (3). Then the QBP
constraints (6)–(7) for the elements in the blocks Y12, Y T

12 and Y22 can be reformulated into
the QBP constraints (6)–(7) for the elements in the block Y11. For example, to reformulate
the inequalities

yi,k + y j,k ≤ yk,k + yi, j , 1 ≤ i ≤ n, n + 1 ≤ j, k ≤ 2n, j �= k,

we exploit Y22 = J+Y11− y1eT−eyT1 to rewrite y j,k and yk,k . We also use Y12 = y1eT−Y11
to rewrite yi,k and yi, j , which leads to the inequalities

yi, j + yk, j ≤ y j, j + yi,k, 1 ≤ i, j, k ≤ n. (11)

Similarly, to reformulate the inequalities

yi,i + y j, j + yk,k ≤ yi, j + yi,k + y j,k + 1, n + 1 ≤ i, j, k ≤ 2n, j �= k �= i,

we exploit Y22 = J + Y11 − y1eT − eyT1 to rewrite all y-variables. This results with the
constraints:

yi,i + y j, j + yk,k ≤ yi, j + yi,k + y j,k + 1, 1 ≤ i, j, k ≤ n, j �= k �= i. (12)

Continuing in a similar way, we get that the constraints (6)–(7) can be reduced to the con-
straints (11)–(12), i.e., to the same inequalities for the smaller index set. We summarize the
previous results in the following theorem.

Theorem 6 The SDP relaxation (9)with additional constraints (10) is equivalent to the SDP
relaxation (3) with additional BQP constraints (4)–(7).

Thus, this paper presents reformulated and simplified the strongest SDP relaxation for
the the bisection problem, and suggest its strengthening. In the following section we test our
simplified and strengthened SDP relaxation on several graphs from the literature.

5 Numerical results

In this section we present numerical results that verify the quality of the SDP relaxation (9),
as well as the relaxation obtained after adding the BQP constraints (10) to (9). All relaxations
were solved with MOSEK Aps (2015) using the Yalmip interface (Löfberg 2004) on an Intel
Xeon, E5-1620, 3.70 GHz with 32 GB memory.

The instances we use belong to the various classes of graphs from the literature. In par-
ticular, in Tables 1 and 2 we consider the following graphs.

– compiler design instances were introduced in Johnson et al. (1993). We
denote them by cd.xx.yy.
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Table 1 Computational results for the bisection problem

Instance |V | mT (2) (9) (9)+ (10) u.b.

cd.30.47 30 (20, 10) 110 114 114 114

cd.30.56 30 (20, 10) 156 169 169 169

cd.45.98 45 (25, 20) 576 631 631 631

cd.47.99 47 (25, 22) 471 514 537 537

cd.47.101 47 (25, 22) 326 361 382 382

cd.61.187 61 (40, 21) 774 798 798 798

kkt_lowt01 82 (42, 40) 5 5 13 13

kkt_putt01 115 (59, 56) 20 22 28 29

mesh.35.54 35 (22, 13) 2 3 4 4

mesh.69.212 69 (40, 29) 2 2 4 4

mesh.70.120 70 (50, 20) 2 4 6 6

mesh.74.129 74 (70, 4) 1 4 4 4

mesh.137.231 137 (100, 37) 1 3 6 6

mesh.148.265 148 (120, 28) 1 5 6 6

vlsi.34.71 34 (22, 12) 4 6 6 6

vlsi.37.92 37 (30, 7) 3 6 6 6

vlsi.38.105 38 (20, 18) 84 86 110 110

vlsi.42.132 42 (20, 22) 97 99 120 120

vlsi.48.81 48 (40, 8) 4 12 12 18

vlsi.166.504 166 (100, 66) 12 23 24 24

vlsi.170.424 170 (100, 70) 35 37 37 48

Table 2 Computational times in seconds for the bisection problem

Instance |V | mT (2) (9) (3) (9)+ (10)

cd.47.99 47 (25, 22) 1 2 2 7

cd.47.101 47 (25, 22) 1 2 3 6

cd.61.187 61 (40, 21) 3 4 4 n.a.

kkt_lowt01 82 (42, 40) 10 21 21 442

kkt_putt01 115 (59, 56) 66 106 114 1289

mesh.35.54 35 (22, 13) 1 1 1 3

mesh.69.212 69 (40, 29) 6 9 11 83

mesh.70.120 70 (50, 20) 4 12 9 55

mesh.74.129 74 (70, 4) 7 12 14 n.a.

mesh.137.231 137 (100, 37) 167 296 345 6574

mesh.148.265 148 (120, 28) 241 550 566 990

vlsi.38.105 38 (20, 18) 1 1 1 15

vlsi.42.132 42 (20, 22) 1 1 1 20

vlsi.48.81 48 (40, 8) 1 2 2 11

vlsi.166.504 166 (100, 66) 371 892 1081 2079

vlsi.170.424 170 (100, 70) 486 943 1252 7789
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– kkt instances originate from nested dissection approaches for solving sparse sym-
metric linear systems, see Helmberg (2004). We denote them by kkt_name.

– mesh instances come from an application of the finite element methods, see Souza
et al. (1994). We denote them with the initials mesh.xx.yy.

– VLSI design instances are derived from data in the layout of electronic circuits.
For details see Ferreira et al. (1998). We denote them with the initials vlsi.xx.yy.

In the above instances xx denotes the number of vertices, and yy the number of edges in
the graph. Table 1 reads as follows. In the first three columns, we list the graphs, number
of vertices in the graph, and corresponding m, respectively. In the fourth to six column we
present the SDP bounds (2), (9), and the SDP bound (9) with additional BQP constraints (10),
respectively. Bounds in the column six are obtained by adding the most violated inequalities
of type (10) to the SDP relaxation (9). The cutting plane scheme adds at most 2n violated
valid constraints in each iteration and performs at most 20 iterations. In the last column of
Table 1 we list upper bounds obtained by a tabu search heuristics, see also Rolland et al.
(1996).

All lower bounds in Table 1 are rounded up to the closest integer. Note that for only three
out of twenty-one instances we can not prove optimality.

In Table 2 we list the computational times required for solving the SDP relaxations and
instances from Table 1. In the same table we include the computational times for solving
the Slater feasible version of the SDP relaxation (3), see Wolkowicz and Zhao (1999). We
do not compute the SDP bound (9)+ (10), if (9) provides an optimal solution. In such cases,
we write ‘n.a.’. Since the computational times for computing each of the lower bounds for
cd.30.47, cd.30.56, cd.45.98 are below 1 s, we omit these results from the table.

Table 2 shows that there is only a marginal time difference for solving (2), (9), and (3)
for graphs up to 61 vertices. The results show that for graphs with more than 61 vertices, the
SDP relaxation (2) requires noticeable less computational effort than the other relaxations.
Computational times in Table 2 verify that there is an advantage in solving the relaxation (9)
for larger graphs (n > 115) than solving (3).

Table 2 indicates that sometimes the running time for solving (9)+ (10) is a few times
longer than the running time for solving (9). For example, we compute the bound (9) for
vlsi.166.504 (n = 166) in 892 s, and (9)+ (10) in 2079 s. See also results for cd.47.101,
mesh.148.265. However, the difference between the two running times can be significant. In
particular, we compute the SDPbound (9) forkkt_putt01 (n = 115) in 106 s, and (9)+ (10)
in 21 min. [To approximately solve the SDP relaxation (3)+ (4)–(7) using the cutting plane
schema for kkt_putt01 it takes about 47 min]. In general, the computational time for
solving (9)+ (10) depends on the number of the violated BQP constraints (10) after each
iteration of the cutting plane scheme.

Van Dam and Sotirov (2015) strengthened the SDP relaxations (2) and (3) by adding two
constraints that correspond to assigning two vertices of the graph to different parts of the
partition. In particular, they show that such strengthening performs well on highly symmetric
graphswhen other relaxations provideweak or trivial bounds. In vanDamand Sotirov (2015),
it was also shown how to aggregate the triangle and independent set constraints for highly
symmetric graphs in order to add them to the SDP relaxation (2). Our numerical results
show that the SDP relaxation (9) with additional inequalities (10) provides bounds that are
competitive to those from van Dam and Sotirov (2015).

In particular, in Table 3 we list bounds for highly symmetric graphs considered in van
Dam and Sotirov (2015). Pappus, Desargues, and Biggs–Smith graphs are distance-
regular graphs, J (7, 2) is the Johnson graph. The first three columns in Table 3 read similar
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Table 3 Bounds for the bisection on highly symmetric graphs

G |V | mT (9) b.b. (van Dam and
Sotirov 2015)

(9)+ (10) u.b.

Pappus 18 (10, 8) 6 7 7 8

Desargues 20 (15, 5) 5 6 6 7

J (7, 2) 21 (11, 10) 37 40 40 40

Biggs–Smith 102 (70, 32) 10 15 15 18

as the first three columns in Table 1. In the fourth (resp. sixth) column we list values of the
SDP bound (9) (resp. bound (9) with additional inequalities (10)) for different graphs. The
fifth column of Table 3 lists the best obtained bounds from van Dam and Sotirov (2015); that
is for the Pappus graph the relaxation (2) with all triangle inequalities, for Desargues the
relaxation (3) with constraints that fix two vertices of the graph, for J (7, 2) the relaxation (2)
with independent set inequalities, and for Biggs–Smith the relaxation (2) with all triangle
inequalities.

Table 3 shows that our new relaxation (9)+ (10) provides lower bounds that are competitive
with other bounding approaches known for highly symmetric graphs. Although most of the
bounds presented in van Dam and Sotirov (2015) can be solved within a few seconds, it
is not clear a priori which of the bounding approaches should be implemented for a given
graph. However, the SDP relaxation (9)+ (10) provides lower bounds that equal the best
bounds among all approaches studied in van Dam and Sotirov (2015). To compute the SDP
bound (9) for Biggs–Smith it takes 22 s, and to compute the bound (9)+ (10) for J (7, 2)
(resp. Biggs–Smith) it takes 4 s (resp. 773 s). All other bounds in Table 3 are obtained
within a second. To compute the SDP bound (9) for highly symmetric graphs we didn’t
exploit symmetry reduction as described in van Dam and Sotirov (2015) although this can
be done in a similar way. By doing as described in van Dam and Sotirov (2015), one can
compute SDP bounds (9) from Table 3 very fast. The interested reader is invited to verify
this.

6 Conclusion

In this paper we present an SDP relaxation for the graph bisection problem with a matrix
variable of order n, where n is the order of the graph. To derive our relaxation we exploit the
fact that variables corresponding to one set in the bisection uniquely determine variables of
the other set.We prove that our relaxation is equivalent to the strongest known SDP relaxation
for general graphs that is obtained by using vector lifting. This result is in the line of the
similar results for some other optimization problems. Namely, for the graph equipartition
problem there exists an SDP relaxation with a matrix variable of order equal to the order
of the graph, which is equivalent to the strongest vector lifting-based SDP relaxation, see
Sotirov (2012).

To strengthen our SDP relaxation we add facet defining inequalities of the boolean quadric
polytope, which enables us to compute strongest SDP bounds for the GBP and for graphs
with n ≤ 200 vertices in reasonable time.

Since our relaxation has strictly feasible solutions it can be directly solved as it is, which
makes it attractive for a branch and bound framework. However, this will be part of our future
research.
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