275 research outputs found

    Updates on polyurethane and its multifunctional applications in biomedical engineering

    Get PDF
    Polyurethanes (PUs) have properties that make them promising in biomedical applications. PU is recognized as one of the main families of blood and biocompatible materials. PU plays a vital role in the design of medical devices in various medical fields. The structure of PU contains two segments: soft and hard. Its elastomeric feature is due to its soft segment, and its excellent and high mechanical property is because of its hard segment. It is possible to achieve specific desirable and targeted properties by changing the soft and hard chemical structures and the ratio between them. The many properties of PU each draw the attention of different medical fields. This work reviews PU highlighted properties, such as biodegradability, biostability, shape memory, and improved antibacterial activity. Also, because PU has a variety of applications, this review restricts its focus to PU's prominent applications in tissue engineering, cardiovascular medicine, drug delivery, and wound healing. In addition, it contains a brief review of PU's applications in biosensors and oral administration

    Review on the strategies to improve the mechanical strength of highly porous bone bioceramic scaffolds

    Get PDF
    Bone healing is an impressive ability of the human body, but critical-sized bone defects require external intervention. Bioceramic scaffolds with excellent biocompatibility and bioactivity have been developed to treat non-healing bone defects because of their unique features for bone repair. Meanwhile, the mechanical properties of the material continue to be disadvantageous. This review focuses on (i) essential factors in affecting and improving bioceramic-based scaffolds' mechanical properties, including porosity, pore size, methods, and material composition, and (ii) summarizing previous studies and highlighting strategies to fabricate scaffolds with improved mechanical properties such as using nano-particles, using a combination of bioceramics and polymers, and modifying scaffold surfaces. Further research is necessary to improve bioceramic scaffolds for bone repair applications.Peer reviewe

    False aneurysm of the radial artery: Unusual complication of both-bone forearm fracture in children: A case report

    Get PDF
    False aneurysm or pseudo aneurysm of an artery in close proximity to fractured bone is a well-recognized entity, and fewer various cases, involving different sites have been reported in the literature. We report new case of a Moroccan's patient who had 10-year-old boy presented with a right non displaced both-bone forearm fracture; the patient was placed in a long arm splint. After, six weeks, the cast was removed. And a pulsatile mass on the volar-radial aspect of the forearm was decouvred. The mass was non-tender and the patient had radial and ulnar pulse. An Ultrasound and brachial angiography showed a false aneurysm of distal radial and the radial artery was ligated

    Sustained Rhythmic Brain Activity Underlies Visual Motion Perception in Zebrafish.

    Get PDF
    Following moving visual stimuli (conditioning stimuli, CS), many organisms perceive, in the absence of physical stimuli, illusory motion in the opposite direction. This phenomenon is known as the motion aftereffect (MAE). Here, we use MAE as a tool to study the neuronal basis of visual motion perception in zebrafish larvae. Using zebrafish eye movements as an indicator of visual motion perception, we find that larvae perceive MAE. Blocking eye movements using optogenetics during CS presentation did not affect MAE, but tectal ablation significantly weakened it. Using two-photon calcium imaging of behaving GCaMP3 larvae, we find post-stimulation sustained rhythmic activity among direction-selective tectal neurons associated with the perception of MAE. In addition, tectal neurons tuned to the CS direction habituated, but neurons in the retina did not. Finally, a model based on competition between direction-selective neurons reproduced MAE, suggesting a neuronal circuit capable of generating perception of visual motion

    Noninvasive optical inhibition with a red-shifted microbial rhodopsin

    Get PDF
    Optogenetic inhibition of the electrical activity of neurons enables the causal assessment of their contributions to brain functions. Red light penetrates deeper into tissue than other visible wavelengths. We present a red-shifted cruxhalorhodopsin, Jaws, derived from Haloarcula (Halobacterium) salinarum (strain Shark) and engineered to result in red light–induced photocurrents three times those of earlier silencers. Jaws exhibits robust inhibition of sensory-evoked neural activity in the cortex and results in strong light responses when used in retinas of retinitis pigmentosa model mice. We also demonstrate that Jaws can noninvasively mediate transcranial optical inhibition of neurons deep in the brains of awake mice. The noninvasive optogenetic inhibition opened up by Jaws enables a variety of important neuroscience experiments and offers a powerful general-use chloride pump for basic and applied neuroscience.McGovern Institute for Brain Research at MIT (Razin Fellowship)United States. Defense Advanced Research Projects Agency. Living Foundries Program (HR0011-12-C-0068)Harvard-MIT Joint Research Grants Program in Basic NeuroscienceHuman Frontier Science Program (Strasbourg, France)Institution of Engineering and Technology (A. F. Harvey Prize)McGovern Institute for Brain Research at MIT. Neurotechnology (MINT) ProgramNew York Stem Cell Foundation (Robertson Investigator Award)National Institutes of Health (U.S.) (New Innovator Award 1DP2OD002002)National Institute of General Medical Sciences (U.S.) (EUREKA Award 1R01NS075421)National Institutes of Health (U.S.) (Grant 1R01DA029639)National Institutes of Health (U.S.) (Grant 1RC1MH088182)National Institutes of Health (U.S.) (Grant 1R01NS067199)National Science Foundation (U.S.) (Career Award CBET 1053233)National Science Foundation (U.S.) (Grant EFRI0835878)National Science Foundation (U.S.) (Grant DMS0848804)Society for Neuroscience (Research Award for Innovation in Neuroscience)Wallace H. Coulter FoundationNational Institutes of Health (U.S.) (RO1 MH091220-01)Whitehall FoundationEsther A. & Joseph Klingenstein Fund, Inc.JPB FoundationPIIF FundingNational Institute of Mental Health (U.S.) (R01-MH102441-01)National Institutes of Health (U.S.) (DP2-OD-017366-01)Massachusetts Institute of Technology. Simons Center for the Social Brai

    Effectiveness of cognitive-behavioral therapy on nutrition improvement and weight of overweight and obese adolescents: a randomized controlled trial

    Get PDF
    Aim: To assess the effectiveness of a cognitive-behavioral treatment (CBT) program on weight reduction among Iranian adolescents who are overweight. Methods: Using a randomized controlled trial design, 55 adolescents who were overweight (mean [SD] age=14.64 [1.69] years; zBMI=2.18 [0.65]) were recruited in the CBT program and 55 in the treatment as usual (TAU; mean age=14.88 [1.50]; zBMI=2.09 [0.57]) group. All the participants completed several questionnaires (Child Dietary Self-Efficacy Scale; Weight Efficacy Lifestyle questionnaire; Physical Exercise Self-Efficacy Scale; Pediatric Quality of Life Inventory; and self-reported physical activity and diet) and had their anthropometrics measured (height, weight, waist and hip circumferences, and body fat). Results: The CBT group consumed significantly more fruits and juice, vegetables, and dairy in the 6-month follow- up as compared with the TAU group (p-values <0.001). The CBT group consumed significantly less sweet snacks, salty snacks, sweet drinks, sausages/processed meat, and oils in the six-month follow-up compared with the TAU group (p-values<0.001). Additionally, the waist circumference, BMI, waist-hip ratio, and fat mass were significantly decreased in the CBT group in the six-month follow-up compared with the TAU group (p-values<0.005). The CBT group significantly improved their psychosocial health, physical activity, and health-related quality of life (p-values<0.001). Conclusion: The CBT program showed its effectiveness in reducing weight among Iranian adolescents who were overweight. Healthcare providers may want to adopt this program to treat excess weight problems for adolescents

    (Photo-)crosslinkable gelatin derivatives for biofabrication applications

    Get PDF
    Over the recent decades gelatin has proven to be very suitable as an extracellular matrix mimic for bio-fabrication and tissue engineering applications. However, gelatin is prone to dissolution at typical cell culture conditions and is therefore often chemically modified to introduce (photo-)crosslinkable functionalities. These modifications allow to tune the material properties of gelatin, making it suitable for a wide range of biofabrication techniques both as a bioink and as a biomaterial ink (component). The present review provides a non-exhaustive overview of the different reported gelatin modification strategies to yield crosslinkable materials that can be used to form hydrogels suitable for biofabrication applications. The different crosslinking chemistries are discussed and classified according to their mechanism including chain-growth and step-growth polymerization. The step-growth polymerization mechanisms are further classified based on the specific chemistry including different (photo-)click chemistries and reversible systems. The benefits and drawbacks of each chemistry are also briefly discussed. Furthermore, focus is placed on different biofabrication strategies using either inkjet, deposition or light-based additive manufacturing techniques, and the applications of the obtained 3D constructs

    3D bioactive composite scaffolds for bone tissue engineering

    Get PDF
    Bone is the second most commonly transplanted tissue worldwide, with over four million operations using bone grafts or bone substitute materials annually to treat bone defects. However, significant limitations affect current treatment options and clinical demand for bone grafts continues to rise due to conditions such as trauma, cancer, infection and arthritis. Developing bioactive three-dimensional (3D) scaffolds to support bone regeneration has therefore become a key area of focus within bone tissue engineering (BTE). A variety of materials and manufacturing methods including 3D printing have been used to create novel alternatives to traditional bone grafts. However, individual groups of materials including polymers, ceramics and hydrogels have been unable to fully replicate the properties of bone when used alone. Favourable material properties can be combined and bioactivity improved when groups of materials are used together in composite 3D scaffolds. This review will therefore consider the ideal properties of bioactive composite 3D scaffolds and examine recent use of polymers, hydrogels, metals, ceramics and bio-glasses in BTE. Scaffold fabrication methodology, mechanical performance, biocompatibility, bioactivity, and potential clinical translations will be discussed
    corecore