945 research outputs found

    Spectrum of polysaccharides degradation products of ales and lager beers

    Get PDF
    The saccharide spectrum, as a distribution of fractions of different molecular mass, of sixteen beers was determined by ultracentrifugation using filters with cut-offs of 1, 5, 10 and 50 kDa. The saccharide concentrations in the filtrates were determined by density measurements. The saccharide composition was examined through HPAEC-PAD. The results were compared with the values of classic features of beers. The newly developed method provides additional information of the beers and is a simple and fast tool for exploring the effect of the saccharide spectrum on the industrial characteristics. The results revealed that similar top fermentation beers and similar lager beers have different saccharide spectra

    Basic principles of emulsion templating and its use as an emerging manufacturing method of tissue engineering scaffolds

    Get PDF
    Tissue engineering (TE) aims to regenerate critical size defects, which cannot heal naturally, by using highly porous matrices called TE scaffolds made of biocompatible and biodegradable materials. There are various manufacturing techniques commonly used to fabricate TE scaffolds. However, in most cases, they do not provide materials with a highly interconnected pore design. Thus, emulsion templating is a promising and convenient route for the fabrication of matrices with up to 99% porosity and high interconnectivity. These matrices have been used for various application areas for decades. Although this polymer structuring technique is older than TE itself, the use of polymerised internal phase emulsions (PolyHIPEs) in TE is relatively new compared to other scaffold manufacturing techniques. It is likely because it requires a multidisciplinary background including materials science, chemistry and TE although producing emulsion templated scaffolds is practically simple. To date, a number of excellent reviews on emulsion templating have been published by the pioneers in this field in order to explain the chemistry behind this technique and potential areas of use of the emulsion templated structures. This particular review focusses on the key points of how emulsion templated scaffolds can be fabricated for different TE applications. Accordingly, we first explain the basics of emulsion templating and characteristics of PolyHIPE scaffolds. Then, we discuss the role of each ingredient in the emulsion and the impact of the compositional changes and process conditions on the characteristics of PolyHIPEs. Afterward, current fabrication methods of biocompatible PolyHIPE scaffolds and polymerisation routes are detailed, and the functionalisation strategies that can be used to improve the biological activity of PolyHIPE scaffolds are discussed. Finally, the applications of PolyHIPEs on soft and hard TE as well as in vitro models and drug delivery in the literature are summarised

    Bridging the Gap between the National Library and Researchers

    Get PDF
    This poster describes the KB Researcher-in-residence programme, the first three pilot placements of 2014 and our lessons learned

    Laser direct writing (LDW) of magnetic structures

    Get PDF
    Laser direct writing (LDW) has been used to pattern 90nm thick permalloy (Ni 81 Fe 19 ) into 1-D and 2-D microstructures with strong shape anisotropy. Sub-nanosecond laser pulses were focused with a 0.75 NA lens to a 1.85μm diameter spot, to achieve a fluence of approximately 350 mJ.cm -2 and ablate the permalloy film. Computer-controlled sample scanning then allowed structures to be defined. Scan speeds were controlled to give 30% overlap between successive laser pulses and reduce the extent of width modulation in the final structures. Continuous magnetic wires that adjoined the rest of the film were fabricated with widths from 650 nm - 6.75μm and magneto-optical measurements showed coercivity reducing across this width range from 47 Oe to 11 Oe. Attempts to fabricate wires narrower than 650nm resulted in discontinuities in the wires and a marked decrease in coercivity. This approach is extremely rapid and was carried out in air, at room temperature and with no chemical processing. The 6-kHz laser pulse repetition rate allowed wire arrays across an area of 4 mm x 0.18 mm to be patterned in 85 s

    A hydrophobic platform as a mechanistically relevant transition state stabilising factor appears to be present in the active centre of all glycoside hydrolases

    Get PDF
    AbstractAn in silico survey of the −1 subsite of all known 3D-structures of O-glycoside hydrolases containing a suitably positioned ligand has led to the recognition – apparently without exceptions – of a transition state stabilising hydrophobic platform which is complementary to a crucial hydrophobic patch of the ligand. This platform is family-specific and highly conserved. A comprehensive list is given with examples of enzymes belonging to 33 different families. Several typical constellations of platform – protein residues are described

    Boosting the osteogenic and angiogenic performance of multiscale porous polycaprolactone scaffolds by In vitro generated extracellular matrix decoration

    Get PDF
    Tissue engineering (TE)-based bone grafts are favorable alternatives to autografts and allografts. Both biochemical properties and the architectural features of TE scaffolds are crucial in their design process. Synthetic polymers are attractive biomaterials to be used in the manufacturing of TE scaffolds, due to various advantages, such as being relatively inexpensive, enabling precise reproducibility, possessing tunable mechanical/chemical properties, and ease of processing. However, such scaffolds need modifications to improve their limited interaction with biological tissues. Structurally, multiscale porosity is advantageous over single-scale porosity; therefore, in this study, we have considered two key points in the design of a bone repair material; (i) manufacture of multiscale porous scaffolds made of photocurable polycaprolactone (PCL) by a combination of emulsion templating and three-dimensional (3D) printing and (ii) decoration of these scaffolds with the in vitro generated bone-like extracellular matrix (ECM) to create biohybrid scaffolds that have improved biological performance compared to PCL-only scaffolds. Multiscale porous scaffolds were fabricated, bone cells were cultured on them, and then they were decellularized. The biological performance of these constructs was tested in vitro and in vivo. Mesenchymal progenitors were seeded on PCL-only and biohybrid scaffolds. Cells not only showed improved attachment on biohybrid scaffolds but also exhibited a significantly higher rate of cell growth and osteogenic activity. The chick chorioallantoic membrane (CAM) assay was used to explore the angiogenic potential of the biohybrid scaffolds. The CAM assay indicated that the presence of the in vitro generated ECM on polymeric scaffolds resulted in higher angiogenic potential and a high degree of tissue infiltration. This study demonstrated that multiscale porous biohybrid scaffolds present a promising approach to improve bioactivity, encourage precursors to differentiate into mature bones, and to induce angiogenesis

    Hybrid manufacturing strategies for tissue engineering scaffolds using methacrylate functionalised poly(glycerol sebacate)

    Get PDF
    Poly(glycerol sebacate) is an attractive biomaterial for tissue engineering due to its biocompatibility, elasticity and rapid degradation rate. However, poly(glycerol sebacate) requires harsh processing conditions, involving high temperatures and vacuum for extended periods, to produce an insoluble polymer matrix. These conditions make generating accurate and intricate geometries from poly(glycerol sebacate), such as those required for tissue engineering scaffolds, difficult. Functionalising poly(glycerol sebacate) with methacrylate groups produces a photocurable polymer, poly(glycerol sebacate)-methacrylate, which can be rapidly crosslinked into an insoluble matrix. Capitalising on these improved processing capabilities, here, we present a variety of approaches for fabricating porous tissue engineering scaffolds from poly(glycerol sebacate)-methacrylate using sucrose porogen leaching combined with other manufacturing methods. Mould-based techniques were used to produce porous disk-shaped and tubular scaffolds. Porogen size was shown to influence scaffold porosity and mechanical performance, and the porous poly(glycerol sebacate)-methacrylate scaffolds supported the proliferation of primary fibroblasts in vitro. Additionally, scaffolds with spatially variable mechanical properties were generated by combining variants of poly(glycerol sebacate)-methacrylate with different stiffness. Finally, subtractive and additive manufacturing methods were developed with the capabilities to generate porous poly(glycerol sebacate)-methacrylate scaffolds from digital designs. These hybrid manufacturing strategies offer the ability to produce accurate macroscale poly(glycerol sebacate)-methacrylate scaffolds with tailored microscale porosity and spatially resolved mechanical properties suitable for a broad range of applications across tissue engineering

    The Ages and Metallicities of the Globular Clusters in the Sparkler

    Full text link
    JWST observations of the strongly lensed galaxy The Sparkler have revealed a population of gravitationally bound globular cluster (GC) candidates. Different analyses have resulted in broadly similar ages but significantly different metallicities, questioning the assembly history that has led to the formation of such a population. In this letter, we re-analyse the two sets of photometry available in the literature with the code MCMAME especially tailored to fit physical properties of GCs. We find the ages and metallicities from both datasets are consistent within 1 σ\sigma uncertainties. A significant group of GCs is consistent with being old and metal poor ([Fe/H] ∼−1.7\sim -1.7). For this group, the ages do not converge, hence, we conclude that they are definitively older than 1 Gyr and can be as old as the age of the Universe. The remaining GCs have younger ages and a metallicity spread. The ages and metallicities distribution of GCs in the Sparkler are consistent with those observed in Local Group's galaxies at similar lookback times. Comparing with predictions from E-MOSAICS simulations we confirm that the Sparkler GC population traces the self-enrichment history of a galaxy which might become a few times 10910^9 M⊙_{\odot} massive system at redshift z=0z = 0Comment: MNRAS letter, accepted for publicatio

    'De menschen koopen alleen boeken, welke ze nodig hebben'. Uitgeverij De Erven F. Bohn, 1900-1940

    Get PDF
    A history of the Dutch publishing firm De Erven F. Bohn during the years 1900-1940, the study argues that the Dutch publishing industry in this period is characterised by a proliferation of different publishing fields, resulting in a gradual evolution of most large publishing houses from general to specialised. It studies the structure of various publishing fields, particularly by focusing on the different strategies of list building as distinguishing characteristics of the distinctive fields and the subsequent amplification of the segmentation of the Dutch publishing landscape.Modern and Contemporary Studie
    • …
    corecore