1,035 research outputs found

    Application of bacteriophages for detection and control of foodborne pathogens

    Get PDF
    The incidence of foodborne infectious diseases is stable or has even increased in many countries. Consequently, our awareness regarding hygiene measures in food production has also increased dramatically over the last decades. However, even today's modern production techniques and intensive food-monitoring programs have not been able to effectively control the problem. At the same time, increased production volumes are distributed to more consumers, and if contaminated, potentially cause mass epidemics. Accordingly, research directed to improve food safety has also been taken forward, also exploring novel methods and technologies. Such an approach is represented by the use of bacteriophage for specific killing of unwanted bacteria. The extreme specificity of phages renders them ideal candidates for applications designed to increase food safety during the production process. Phages are the natural enemies of bacteria, and can be used for biocontrol of bacteria without interfering with the natural microflora or the cultures in fermented products. Moreover, phages or phage-derived proteins can also be used to detect the presence of unwanted pathogens in food or the production environments, which allows quick and specific identification of viable cells. This review intends to briefly summarize and explain the principles and current standing of these approache

    Listeria bacteriophage peptidoglycan hydrolases feature high thermoresistance and reveal increased activity after divalent metal cation substitution

    Get PDF
    The ability of the bacteriophage-encoded peptidoglycan hydrolases (endolysins) to destroy Gram-positive bacteria from without makes these enzymes promising antimicrobials. Recombinant endolysins from Listeria monocytogenes phages have been shown to rapidly lyse and kill the pathogen in all environments. To determine optimum conditions regarding application of recombinant Listeria phage endolysins in food or production equipments, properties of different Listeria endolysins were studied. Optimum NaCl concentration for the amidase HPL511 was 200nM and 300mM for the peptidases HPL118, HPL500, and HPLP35. Unlike most other peptidoglycan hydrolases, all four enzymes exhibited highest activity at elevated pH values at around pH 8-9. Lytic activity was abolished by EDTA and could be restored by supplementation with various divalent metal cations, indicating their role in catalytic function. While substitution of the native Zn2+ by Ca2+ or Mn2+ was most effective in case of HPL118, HPL500, and HPLP35, supplementation with Co2+ and Mn2+ resulted in an approximately 5-fold increase in HPL511 activity. Interestingly, the glutamate peptidases feature a conserved SxHxxGxAxD zinc-binding motif, which is not present in the amidases, although they also require centrally located divalent metals for activity. The endolysins HPL118, HPL511, and HPLP35 revealed a surprisingly high thermostability, with up to 35% activity remaining after 30min incubation at 90°C. The available data suggest that denaturation at elevated temperatures is reversible and may be followed by rapid refolding into a functional stat

    Complete Nucleotide Sequence and Molecular Characterization of Bacillus Phage TP21 and its Relatedness to Other Phages with the Same Name

    Get PDF
    Three different Bacillus bacteriophages designated TP21 are known from the literature. We have determined the sequence and structure of the TP21-L genome, and compared it to the other phages. The genome is 37.5 kb in size, possesses fixed invariable genome ends and features the typical modular organization of a temperate siphovirus. TP21-L is neither identical to TP21 isolated by Thorne (TP21-T), as shown by a PCR-based approach nor to TP21 isolated by He et al. (TP21-H), as estimated from phage dimensions. For reasons of clarity, we suggest renaming the different TP21 isolates

    Distribution and composition of the lysis cassette of Lactococcus lactis phages and functional analysis of bacteriophage ul36 holin

    Get PDF
    The bacteriophage lysis cassette, which comprises a lysin and a holin gene, was analyzed in 18 Lactococcus lactis phages. A muramidase motif was found in the lysins of c2-like phages, while an amidase motif was observed in the lysins of 936-like phages. Both amidase and muramidase types were detected among the P335 phages. The P335 lysins were separated into three groups based on amino acid sequence identity. A class I holin was recognized in 936-like and c2-like phages, whereas P335-like phages possess class II holins. The P335 holins were further divided into four groups based on sequence identity. Only the holins of 936-like phages contained putative dual-start motifs. The unusual lysis cassette of the highly virulent P335-like phage ul36 contains a unique holin (orf74B) upstream of a lysin which is present in several other P335-like phages. Using the λΔSthf system, we demonstrated that gpORF74B induces cell lysis at the same time as λΔSthf::S105, the effector of λ lysis. Transcriptional analysis of ul36 lysis cassette showed that first transcripts are detected 35 min after infection of L. lactis cells. The lysis clock of phage ul36 appears to be controlled by the late expression of the holin and lysin gene

    The SPO1-related bacteriophages

    Get PDF
    A large and diverse group of bacteriophages has been termed ‘SPO1-like viruses'. To date, molecular data and genome sequences are available for Bacillus phage SPO1 and eight related phages infecting members of other bacterial genera. Many additional bacteriophages have been described as SPO1-related, but very few data are available for most of them. We present an overview of putative ‘SPO1-like viruses' and shall discuss the available data in view of the recently proposed expansion of this group of bacteriophages to the tentative subfamily Spounavirinae. Characteristics of SPO1-related phages include (a) the host organisms are Firmicutes; (b) members are strictly virulent myoviruses; (c) all phages feature common morphological properties; (d) the phage genome consists of a terminally redundant, non-permuted dsDNA molecule of 127-157kb in size; and (e) phages share considerable amino acid homology. The number of phages isolated consistent with these parameters is large, suggesting a ubiquitous nature of this group of viruse

    Rhamnose-inducible gene expression in Listeria monocytogenes

    Get PDF
    Acid production from rhamnose is a characteristic phenotype of Listeria monocytogenes. We report the identification of the rhamnose transport and utilization operon located at lmo2846 to lmo2851, including the rhamnose-dependent promoter P(rha). Expression of reporter genes under control of P(rha) on a single copy integration vector demonstrated its suitability for inducible gene expression in L. monocytogenes. Transcription initiation from P(rha) is dose dependent, and a concentration as low as 100 µM rhamnose was found sufficient for induction. Moreover, P(rha) is subject to glucose catabolite repression, which provides additional options for strict control of expression. Infection of human THP1 macrophages revealed that P(rha) is repressed in intracellular L. monocytogenes, which is explained by the absence of rhamnose in the cytosol and possible interference by catabolite repression. The P(rha) promoter provides a novel and useful tool for triggering gene expression in extracellular L. monocytogenes, whereas intracellular conditions prevent transcription from this promoter

    Modeling the growth of multicellular cancer spheroids in a\ud bioengineered 3D microenvironment and their treatment with an\ud anti-cancer drug

    Get PDF
    A critical step in the dissemination of ovarian cancer cells is the formation of multicellular spheroids from cells shed from the primary tumor. The objectives of this study were to establish and validate bioengineered three-dimensional (3D) microenvironments for culturing ovarian cancer cells in vitro and simultaneously to develop computational models describing the growth of multicellular spheroids in these bioengineered matrices. Cancer cells derived from human epithelial ovarian carcinoma were embedded within biomimetic hydrogels of varying stiffness and cultured for up to 4 weeks. Immunohistochemistry was used to quantify the dependence of cell proliferation and apoptosis on matrix stiffness, long-term culture and treatment with the anti-cancer drug paclitaxel.\ud \ud Two computational models were developed. In the first model, each spheroid was treated as an incompressible porous medium, whereas in the second model the concept of morphoelasticity was used to incorporate details about internal stresses and strains. Each model was formulated as a free boundary problem. Functional forms for cell proliferation and apoptosis motivated by the experimental work were applied and the predictions of both models compared with the output from the experiments. Both models simulated how the growth of cancer spheroids was influenced by mechanical and biochemical stimuli including matrix stiffness, culture time and treatment with paclitaxel. Our mathematical models provide new perspectives on previous experimental results and have informed the design of new 3D studies of multicellular cancer spheroids

    Growth of confined cancer spheroids: a combined experimental and mathematical modelling approach

    Get PDF
    We have integrated a bioengineered three-dimensional platform by generating multicellular cancer spheroids in a controlled microenvironment with a mathematical model to investigate\ud confined tumour growth and to model its impact on cellular processes

    Hydrogel microwell arrays allow the assessment of protease-associated enhancement of cancer cell aggregation and survival

    Get PDF
    Current routine cell culture techniques are only poorly suited to capture the physiological complexity of tumor microenvironments, wherein tumor cell function is affected by intricate three-dimensional (3D), integrin-dependent cell-cell and cell-extracellular matrix (ECM) interactions. 3D cell cultures allow the investigation of cancer-associated proteases like kallikreins as they degrade ECM proteins and alter integrin signaling, promoting malignant cell behaviors. Here, we employed a hydrogel microwell array platform to probe using a high-throughput mode how ovarian cancer cell aggregates of defined size form and survive in response to the expression of kallikreins and treatment with paclitaxel, by performing microscopic, quantitative image, gene and protein analyses dependent on the varying microwell and aggregate sizes. Paclitaxel treatment increased aggregate formation and survival of kallikrein-expressing cancer cells and levels of integrins and integrin-related factors. Cancer cell aggregate formation was improved with increasing aggregate size, thereby reducing cell death and enhancing integrin expression upon paclitaxel treatment. Therefore, hydrogel microwell arrays are a powerful tool to screen the viability of cancer cell aggregates upon modulation of protease expression, integrin engagement and anti-cancer treatment providing a micro-scaled yet high-throughput technique to assess malignant progression and drug-resistance

    Listeria monocytogenes tyrosine phosphatases affect wall teichoic acid composition and phage resistance

    Get PDF
    Tyrosine phosphatase (PTP)-like proteins exist in many bacteria and are segregated into two major groups: low molecular weight and conventional. The latter group also has activity as phosphoinositide phosphatases. These two kinds of PTP are suggested to be involved in many aspects of bacterial physiology including stress response, DNA binding proteins, virulence, and capsule/cell wall production. By annotation, Listeria monocytogenes possesses two potential low molecular weight and two conventional PTPs. Using L. monocytogenes wild-type (WT) strain 10403S, we have created an in-frame deletion mutant lacking all four PTPs, as well as four additional complemented strains harboring each of the PTPs. No major physiological differences were observed between the WT and the mutant lacking all four PTPs. However, the deletion mutant strain was resistant to Listeria phages A511 and P35 and sensitive to other Listeria phages. This was attributed to reduced attachment to the cell wall. The mutant lacking all PTPs was found to lack N-acetylglucosamine in its wall teichoic acid. Phage sensitivity and attachment was rescued in a complemented strain harboring a low molecular weight PTP (LMRG1707
    • …
    corecore