87 research outputs found

    Exhaled Volatile Organic Compounds during Inflammation Induced by TNF-α in Ventilated Rats

    Get PDF
    Systemic inflammation alters the composition of exhaled breath, possibly helping clinicians diagnose conditions such as sepsis. We therefore evaluated changes in exhaled breath of rats given tumor necrosis factor-alpha (TNF-α). Thirty male Sprague-Dawley rats were randomly assigned to three groups (n = 10 each) with intravenous injections of normal saline (control), 200 ”g·kg−1 bodyweight TNF-α (TNF-α-200), or 600 ”g·kg−1 bodyweight TNF-α (TNF-α-600), and were observed for 24 h or until death. Animals were ventilated with highly-purified synthetic air to analyze exhaled air by multicapillary column–ion mobility spectrometry. Volatile organic compounds (VOCs) were identified from a database. We recorded blood pressure and cardiac output, along with cytokine plasma concentrations. Control rats survived the 24 h observation period, whereas mean survival time decreased to 22 h for TNF-α-200 and 23 h for TNF-α-600 rats. Mean arterial pressure decreased in TNF-α groups, whereas IL-6 increased, consistent with mild to moderate inflammation. Hundreds of VOCs were detected in exhalome. P-cymol increased by a factor-of-two 4 h after injection of TNF-α-600 compared to the control and TNF-α-200. We found that 1-butanol and 1-pentanol increased in both TNF-α groups after 20 h compared to the control. As breath analysis distinguishes between two doses of TNF-α and none, we conclude that it might help clinicians identify systemic inflammatio

    Suppression of grasshopper sound production by nitric oxide-releasing neurons of the central complex

    Get PDF
    The central complex of acridid grasshoppers integrates sensory information pertinent to reproduction-related acoustic communication. Activation of nitric oxide (NO)/cyclic GMP-signaling by injection of NO donors into the central complex of restrained Chorthippus biguttulus females suppresses muscarine-stimulated sound production. In contrast, sound production is released by aminoguanidine (AG)-mediated inhibition of nitric oxide synthase (NOS) in the central body, suggesting a basal release of NO that suppresses singing in this situation. Using anti-citrulline immunocytochemistry to detect recent NO production, subtypes of columnar neurons with somata located in the pars intercerebralis and tangential neurons with somata in the ventro-median protocerebrum were distinctly labeled. Their arborizations in the central body upper division overlap with expression patterns for NOS and with the site of injection where NO donors suppress sound production. Systemic application of AG increases the responsiveness of unrestrained females to male calling songs. Identical treatment with the NOS inhibitor that increased male song-stimulated sound production in females induced a marked reduction of citrulline accumulation in central complex columnar and tangential neurons. We conclude that behavioral situations that are unfavorable for sound production (like being restrained) activate NOS-expressing central body neurons to release NO and elevate the behavioral threshold for sound production in female grasshoppers

    Neurochemical Architecture of the Central Complex Related to Its Function in the Control of Grasshopper Acoustic Communication

    Get PDF
    The central complex selects and coordinates the species- and situation-specific song production in acoustically communicating grasshoppers. Control of sound production is mediated by several neurotransmitters and modulators, their receptors and intracellular signaling pathways. It has previously been shown that muscarinic cholinergic excitation in the central complex promotes sound production whereas both GABA and nitric oxide/cyclic GMP signaling suppress its performance. The present immunocytochemical and pharmacological study investigates the question whether GABA and nitric oxide mediate inhibition of sound production independently. Muscarinic ACh receptors are expressed by columnar output neurons of the central complex that innervate the lower division of the central body and terminate in the lateral accessory lobes. GABAergic tangential neurons that innervate the lower division of the central body arborize in close proximity of columnar neurons and thus may directly inhibit these central complex output neurons. A subset of these GABAergic tangential neurons accumulates cyclic GMP following the release of nitric oxide from neurites in the upper division of the central body. While sound production stimulated by muscarine injection into the central complex is suppressed by co-application of sodium nitroprusside, picrotoxin-stimulated singing was not affected by co-application of this nitric oxide donor, indicating that nitric oxide mediated inhibition requires functional GABA signaling. Hence, grasshopper sound production is controlled by processing of information in the lower division of the central body which is subject to modulation by nitric oxide released from neurons in the upper division

    High e-vector acuity in the polarisation vision system of the fiddler crab Uca vomeris

    Get PDF
    Polarisation vision is used by a variety of species in many important tasks, including navigation and orientation (e.g. desert ant), communication and signalling (e.g. stomatopod crustaceans), and as a possible substitute for colour vision (e.g. cephalopod molluscs). Fiddler crabs are thought to possess the anatomical structures necessary to detect polarised light, and occupy environments rich in polarisation cues. Yet little is known about the capabilities of their polarisation sense. A modified polarisation-only liquid crystal display and a spherical rotating treadmill were combined to test the responses of fiddler crabs to moving polarisation stimuli. The species Uca vomeris was found to be highly sensitive to polarised light and detected stimuli differing in e-vector angle by as little as 3.2 deg. This represents the most acute behavioural sensitivity to polarised light yet measured for a crustacean. The occurrence of null points in their discrimination curve indicates that this species employs an orthogonal (horizontal/vertical) receptor array for the detection of polarised light

    Sound Signalling in Orthoptera

    Get PDF
    The sounds produced by orthopteran insects are very diverse. They are widely studied for the insight they give into acoustic behaviour and the biophysical aspects of sound production and hearing, as well as the transduction of sound to neural signals in the ear and the subsequent processing of information in the central nervous system. The study of sound signalling is a multidisciplinary area of research, with a strong physiological contribution. This review considers recent research in physiology and the links with related areas of acoustic work on the Orthoptera

    Atomic spectrometry update – a review of advances in environmental analysis

    Full text link

    Buonaventura, Wendy: Bauchtanz

    No full text
    • 

    corecore