80 research outputs found

    Verzweigung in einem Finite-Elemente Modell für das hydrostatische Skelett

    Get PDF
    Beyn W-J, Wadepuhl M. Verzweigung in einem Finite-Elemente Modell für das hydrostatische Skelett. Zeitschrift für angewandte Mathematik und Mechanik. 1990;70(4):T272-T274

    Local Group Dwarf Galaxies: Nature And Nurture

    Full text link
    We investigate the formation and evolution of dwarf galaxies in a high resolution, hydrodynamical cosmological simulation of a Milky Way sized halo and its environment. Our simulation includes gas cooling, star formation, supernova feedback, metal enrichment and UV heating. In total, 90 satellites and more than 400 isolated dwarf galaxies are formed in the simulation, allowing a systematic study of the internal and environmental processes that determine their evolution. We find that 95% of satellite galaxies are gas-free at z=0, and identify three mechanisms for gas loss: supernova feedback, tidal stripping, and photo-evaporation due to re-ionization. Gas-rich satellite galaxies are only found with total masses above ~ 5x10^9 solar masses. In contrast, for isolated dwarf galaxies, a total mass of ~ 10^9 solar masses constitutes a sharp transition; less massive galaxies are predominantly gas-free at z=0, more massive, isolated dwarf galaxies are often able to retain their gas. In general, we find that the total mass of a dwarf galaxy is the main factor which determines its star formation, metal enrichment, and its gas content, but that stripping may explain the observed difference in gas content between field dwarf galaxies and satellites with total masses close to 10^9 solar masses. We also find that a morphological transformation via tidal stripping of infalling, luminous dwarf galaxies whose dark matter is less concentrated than their stars, cannot explain the high total mass-light ratios of the faint dwarf spheroidal galaxies.Comment: 18 pages, 13 figures, submitted to MNRA

    Applying scale-free mass estimators to the Local Group in Constrained Local Universe Simulations

    Full text link
    We use the recently proposed scale-free mass estimators to determine the masses of the Milky Way (MW) and Andromeda (M31) galaxy in a dark matter only Constrained Local UniversE Simulation (CLUES). While these mass estimators work rather well for isolated spherical host systems, we examine here their applicability to a simulated binary system with a unique satellite population similar to the observed satellites of MW and M31. We confirm that the scale-free estimators work also very well in our simulated Local Group galaxies with the right number of satellites which follow the observed radial distribution. In the isotropic case and under the assumption that the satellites are tracking the total gravitating mass, the power-law index of the radial satellite distribution N(<r)r3γN(<r)\propto r^{3-\gamma} is directly related to the host's mass profile M(<r)r1αM(<r)\propto r^{1-\alpha} as α=γ2\alpha=\gamma-2. The use of this relation for any given γ\gamma leads to highly accurate mass estimations which is a crucial point for observer, since they do not know a priori the mass profile of the MW and M31 haloes. We discuss possible bias in the mass estimators and conclude that the scale-free mass estimators can be satisfactorily applied to the real MW and M31 system.Comment: 14 pages, 6 figures, 6 tables. Accepted in MNRAS 2012 March 29. Received 2012 March 29; in original form 2011 September 2

    Stealth Galaxies in the Halo of the Milky Way

    Full text link
    We predict that there is a population of low-luminosity dwarf galaxies orbiting within the halo of the Milky Way that have surface brightnesses low enough to have escaped detection in star-count surveys. The overall count of stealth galaxies is sensitive to the presence (or lack) of a low-mass threshold in galaxy formation. These systems have luminosities and stellar velocity dispersions that are similar to those of known ultrafaint dwarf galaxies but they have more extended stellar distributions (half light radii greater than about 100 pc) because they inhabit dark subhalos that are slightly less massive than their higher surface brightness counterparts. As a result, the typical peak surface brightness is fainter than 30 mag per square arcsec. One implication is that the inferred common mass scale for Milky Way dwarfs may be an artifact of selection bias. If there is no sharp threshold in galaxy formation at low halo mass, then ultrafaint galaxies like Segue 1 represent the high-mass, early forming tail of a much larger population of objects that could number in the hundreds and have typical peak circular velocities of about 8 km/s and masses within 300 pc of about 5 million solar masses. Alternatively, if we impose a low-mass threshold in galaxy formation in order to explain the unexpectedly high densities of the ultrafaint dwarfs, then we expect only a handful of stealth galaxies in the halo of the Milky Way. A complete census of these objects will require deeper sky surveys, 30m-class follow-up telescopes, and more refined methods to identify extended, self-bound groupings of stars in the halo.Comment: 12 pages, 7 figures, accepted by ApJ. Several crucial references added and the discussion has been expanded. Conclusions are unchanged

    Satellite galaxies in hydrodynamical simulations of Milky Way sized galaxies

    Full text link
    Collisionless simulations of the CDM cosmology predict a plethora of dark matter substructures in the halos of Milky Way sized galaxies, yet the number of known luminous satellites galaxies is very much smaller, a discrepancy that has become known as the `missing satellite problem'. The most massive substructures have been shown to be plausibly the hosts of the brightest satellites, but it remains unclear which processes prevent star formation in the many other, purely dark substructures. We use high-resolution hydrodynamic simulations of the formation of Milky Way sized galaxies in order to test how well such self-consistent models of structure formation match the observed properties of the Galaxy's satellite population. For the first time, we include in such calculations feedback from cosmic rays injected into the star forming gas by supernovae as well as the energy input from supermassive black holes growing at the Milky Way's centre and its progenitor systems. We find that non-thermal particle populations quite strongly suppress the star formation efficiency of the smallest galaxies. In fact, our cosmic ray model is able to reproduce the observed faint-end of the satellite luminosity function, while models that include only the effects of cosmic reionization, or galactic winds, do significantly worse. Our simulated satellite population approximately matches available kinematic data on the satellites and their observed spatial distribution. We conclude that a proper resolution of the missing satellite problem likely requires the inclusion of non-standard physics for regulating star formation in the smallest halos, and that cosmic reionization alone may not be sufficient.Comment: 20 pages, 17 figure

    Galactic winds driven by cosmic-ray streaming

    Full text link
    Galactic winds are observed in many spiral galaxies with sizes from dwarfs up to the Milky Way, and they sometimes carry a mass in excess of that of newly formed stars by up to a factor of ten. Multiple driving processes of such winds have been proposed, including thermal pressure due to supernova-heating, UV radiation pressure on dust grains, or cosmic ray (CR) pressure. We here study wind formation due to CR physics using a numerical model that accounts for CR acceleration by supernovae, CR thermalization, and advective CR transport. In addition, we introduce a novel implementation of CR streaming relative to the rest frame of the gas. We find that CR streaming drives powerful and sustained winds in galaxies with virial masses M_200 < 10^{11} Msun. In dwarf galaxies (M_200 ~ 10^9 Msun) the winds reach a mass loading factor of ~5, expel ~60 per cent of the initial baryonic mass contained inside the halo's virial radius and suppress the star formation rate by a factor of ~5. In dwarfs, the winds are spherically symmetric while in larger galaxies the outflows transition to bi-conical morphologies that are aligned with the disc's angular momentum axis. We show that damping of Alfven waves excited by streaming CRs provides a means of heating the outflows to temperatures that scale with the square of the escape speed. In larger haloes (M_200 > 10^{11} Msun), CR streaming is able to drive fountain flows that excite turbulence. For halo masses M_200 > 10^{10} Msun, we predict an observable level of H-alpha and X-ray emission from the heated halo gas. We conclude that CR-driven winds should be crucial in suppressing and regulating the first epoch of galaxy formation, expelling a large fraction of baryons, and - by extension - aid in shaping the faint end of the galaxy luminosity function. They should then also be responsible for much of the metal enrichment of the intergalactic medium.Comment: 25 pages, 14 figures, accepted by MNRA

    Satellite Survival in Highly Resolved Milky Way Class Halos

    Full text link
    Surprisingly little is known about the origin and evolution of the Milky Way's satellite galaxy companions. UV photoionisation, supernova feedback and interactions with the larger host halo are all thought to play a role in shaping the population of satellites that we observe today, but there is still no consensus as to which of these effects, if any, dominates. In this paper, we revisit the issue by re-simulating a Milky Way class dark matter (DM) halo with unprecedented resolution. Our set of cosmological hydrodynamic Adaptive Mesh Refinement (AMR) simulations, called the Nut suite, allows us to investigate the effect of supernova feedback and UV photoionisation at high redshift with sub-parsec resolution. We subsequently follow the effect of interactions with the Milky Way-like halo using a lower spatial resolution (50pc) version of the simulation down to z=0. This latter produces a population of simulated satellites that we compare to the observed satellites of the Milky Way and M31. We find that supernova feedback reduces star formation in the least massive satellites but enhances it in the more massive ones. Photoionisation appears to play a very minor role in suppressing star and galaxy formation in all progenitors of satellite halos. By far the largest effect on the satellite population is found to be the mass of the host and whether gas cooling is included in the simulation or not. Indeed, inclusion of gas cooling dramatically reduces the number of satellites captured at high redshift which survive down to z=0.Comment: 22 pages, 16 figures, accepted for publication in MNRA

    The Milky Way's bright satellites as an apparent failure of LCDM

    Full text link
    We use the Aquarius simulations to show that the most massive subhalos in galaxy-mass dark matter halos in LCDM are grossly inconsistent with the dynamics of the brightest Milky Way dwarf spheroidal galaxies. While the best-fitting hosts of the dwarf spheroidals all have 12 < Vmax < 25 km/s, LCDM simulations predict at least ten subhalos with Vmax > 25 km/s. These subhalos are also among the most massive at earlier times, and significantly exceed the UV suppression mass back to z ~ 10. No LCDM-based model of the satellite population of the Milky Way explains this result. The problem lies in the satellites' densities: it is straightforward to match the observed Milky Way luminosity function, but doing so requires the dwarf spheroidals to have dark matter halos that are a factor of ~5 more massive than is observed. Independent of the difficulty in explaining the absence of these dense, massive subhalos, there is a basic tension between the derived properties of the bright Milky Way dwarf spheroidals and LCDM expectations. The inferred infall masses of these galaxies are all approximately equal and are much lower than standard LCDM predictions for systems with their luminosities. Consequently, their implied star formation efficiencies span over two orders of magnitude, from 0.2% to 20% of baryons converted into stars, in stark contrast with expectations gleaned from more massive galaxies. We explore possible solutions to these problems within the context of LCDM and find them to be unconvincing. In particular, we use controlled simulations to demonstrate that the small stellar masses of the bright dwarf spheroidals make supernova feedback an unlikely explanation for their low inferred densities.Comment: 18 pages, 10 figures; matches version published in MNRA

    Galactic star formation and accretion histories from matching galaxies to dark matter haloes

    Full text link
    We present a new statistical method to determine the relationship between the stellar masses of galaxies and the masses of their host dark matter haloes over the entire cosmic history from z~4 to the present. This multi-epoch abundance matching (MEAM) model self-consistently takes into account that satellite galaxies first become satellites at times earlier than they are observed. We employ a redshift-dependent parameterization of the stellar-to-halo mass relation to populate haloes and subhaloes in the Millennium simulations with galaxies, requiring that the observed stellar mass functions at several redshifts be reproduced simultaneously. Using merger trees extracted from the dark matter simulations in combination with MEAM, we predict the average assembly histories of galaxies, separating into star formation within the galaxies (in-situ) and accretion of stars (ex-situ). The peak star formation efficiency decreases with redshift from 23% at z=0 to 9% at z=4 while the corresponding halo mass increases from 10^11.8M\odot to 10^12.5M\odot. The star formation rate of central galaxies peaks at a redshift which depends on halo mass; for massive haloes this peak is at early cosmic times while for low-mass galaxies the peak has not been reached yet. In haloes similar to that of the Milky-Way about half of the central stellar mass is assembled after z=0.7. In low-mass haloes, the accretion of satellites contributes little to the assembly of their central galaxies, while in massive haloes more than half of the central stellar mass is formed ex-situ with significant accretion of satellites at z<2. We find that our method implies a cosmic star formation history and an evolution of specific star formation rates which are consistent with those inferred directly. We present convenient fitting functions for stellar masses, star formation rates, and accretion rates as functions of halo mass and redshift.Comment: 20 pages, 12 figures, 1 table, submitted to MNRA

    The Aquila comparison project: the effects of feedback and numerical methods on simulations of galaxy formation

    Get PDF
    We compare the results of various cosmological gas-dynamical codes used to simulate the formation of a galaxy in the Λ cold dark matter structure formation paradigm. The various runs (13 in total) differ in their numerical hydrodynamical treatment [smoothed particle hydrodynamics (SPH), moving mesh and adaptive mesh refinement] but share the same initial conditions and adopt in each case their latest published model of gas cooling, star formation and feedback. Despite the common halo assembly history, we find large code-to-code variations in the stellar mass, size, morphology and gas content of the galaxy at z= 0, due mainly to the different implementations of star formation and feedback. Compared with observation, most codes tend to produce an overly massive galaxy, smaller and less gas rich than typical spirals, with a massive bulge and a declining rotation curve. A stellar disc is discernible in most simulations, although its prominence varies widely from code to code. There is a well-defined trend between the effects of feedback and the severity of the disagreement with observed spirals. In general, models that are more effective at limiting the baryonic mass of the galaxy come closer to matching observed galaxy scaling laws, but often to the detriment of the disc component. Although numerical convergence is not particularly good for any of the codes, our conclusions hold at two different numerical resolutions. Some differences can also be traced to the different numerical techniques; for example, more gas seems able to cool and become available for star formation in grid-based codes than in SPH. However, this effect is small compared to the variations induced by different feedback prescriptions. We conclude that state-of-the-art simulations cannot yet uniquely predict the properties of the baryonic component of a galaxy, even when the assembly history of its host halo is fully specified. Developing feedback algorithms that can effectively regulate the mass of a galaxy without hindering the formation of high angular momentum stellar discs remains a challeng
    corecore