376 research outputs found

    Monte Carlo Simulations of Star Clusters - IV. Calibration of the Monte Carlo Code and Comparison with Observations for the Open Cluster M67

    Full text link
    We outline the steps needed in order to incorporate the evolution of single and binary stars into a particular Monte Carlo code for the dynamical evolution of a star cluster. We calibrate the results against N-body simulations, and present models for the evolution of the old open cluster M67 (which has been studied thoroughly in the literature with N-body techniques). The calibration is done by choosing appropriate free code parameters. We describe in particular the evolution of the binary, white dwarf and blue straggler populations, though not all channels for blue straggler formation are represented yet in our simulations. Calibrated Monte Carlo runs show good agreement with results of N-body simulations not only for global cluster parameters, but also for e.g. binary fraction, luminosity function and surface brightness. Comparison of Monte Carlo simulations with observational data for M67 shows that is possible to get reasonably good agreement between them. Unfortunately, because of the large statistical fluctuations of the numerical data and uncertainties in the observational data the inferred conclusions about the cluster initial conditions are not firm.Comment: 15 pages, 24 figure

    A stochastic Monte Carlo approach to model real star cluster evolution, II. Self-consistent models and primordial binaries

    Full text link
    The new approach outlined in Paper I (Spurzem \& Giersz 1996) to follow the individual formation and evolution of binaries in an evolving, equal point-mass star cluster is extended for the self-consistent treatment of relaxation and close three- and four-body encounters for many binaries (typically a few percent of the initial number of stars in the cluster). The distribution of single stars is treated as a conducting gas sphere with a standard anisotropic gaseous model. A Monte Carlo technique is used to model the motion of binaries, their formation and subsequent hardening by close encounters, and their relaxation (dynamical friction) with single stars and other binaries. The results are a further approach towards a realistic model of globular clusters with primordial binaries without using special hardware. We present, as our main result, the self-consistent evolution of a cluster consisting of 300.000 equal point-mass stars, plus 30.000 equal mass binaries over several hundred half-mass relaxation times, well into the phase where most of the binaries have been dissolved and evacuated from the core. In a self-consistent model it is the first time that such a realistically large number of binaries is evolving in a cluster with an even ten times larger number of single stars. Due to the Monte Carlo treatment of the binaries we can at every moment analyze their external and internal parameters in the cluster as in an N-body simulation.Comment: LaTeX MNRAS Style 21 pages, 34 figures, submitted to MNRAS Nov. 1999, for preprint, see ftp://ftp.ari.uni-heidelberg.de/pub/spurzem/warspaper-98.ps.gz for associated mpeg-files (20 MB and 13 MB, respectively), see ftp://ftp.ari.uni-heidelberg.de/pub/spurzem/movie1.mpg and ftp://ftp.ari.uni-heidelberg.de/pub/spurzem/movie2.mp

    Compact Binaries in Star Clusters I - Black Hole Binaries Inside Globular Clusters

    Get PDF
    We study the compact binary population in star clusters, focusing on binaries containing black holes, using a self-consistent Monte Carlo treatment of dynamics and full stellar evolution. We find that the black holes experience strong mass segregation and become centrally concentrated. In the core the black holes interact strongly with each other and black hole-black hole binaries are formed very efficiently. The strong interactions, however, also destroy or eject the black hole-black hole binaries. We find no black hole-black hole mergers within our simulations but produce many hard escapers that will merge in the galactic field within a Hubble time. We also find several highly eccentric black hole-black hole binaries that are potential LISA sources, suggesting that star clusters are interesting targets for space-based detectors. We conclude that star clusters must be taken into account when predicting compact binary population statistics.Comment: 19 pages, 5 Tables, 12 Figures, updated in response to referee report, accepted for publication in MNRA

    A stochastic Monte Carlo approach to model real star cluster evolution, III. Direct integrations of three- and four-body interactions

    Get PDF
    Spherically symmetric equal mass star clusters containing a large amount of primordial binaries are studied using a hybrid method, consisting of a gas dynamical model for single stars and a Monte Carlo treatment for relaxation of binaries and the setup of close resonant and fly-by encounters of single stars with binaries and binaries with each other (three- and four-body encounters). What differs from our previous work is that each encounter is being integrated using a highly accurate direct few-body integrator which uses regularized variables. Hence we can study the systematic evolution of individual binary orbital parameters (eccentricity, semi-major axis) and differential and total cross sections for hardening, dissolution or merging of binaries (minimum distance) from a sampling of several ten thousands of scattering events as they occur in real cluster evolution including mass segregation of binaries, gravothermal collapse and reexpansion, binary burning phase and ultimately gravothermal oscillations. For the first time we are able to present empirical cross sections for eccentricity variation of binaries in close three- and four-body encounters. It is found that a large fraction of three-body and four-body encounters results in merging. Previous cross sections obtained by Spitzer and Gao for strong encounters can be reproduced, while for weak encounters non-standard processes like formation of hierarchical triples occur.Comment: 16 pages, 19 figures, Latex in the MN style, submitted to MNRA

    COCOA Code for Creating Mock Observations of Star Cluster Models

    Get PDF
    We introduce and present results from the COCOA (Cluster simulatiOn Comparison with ObservAtions) code that has been developed to create idealized mock photometric observations using results from numerical simulations of star cluster evolution. COCOA is able to present the output of realistic numerical simulations of star clusters carried out using Monte Carlo or \textit{N}-body codes in a way that is useful for direct comparison with photometric observations. In this paper, we describe the COCOA code and demonstrate its different applications by utilizing globular cluster (GC) models simulated with the MOCCA (MOnte Carlo Cluster simulAtor) code. COCOA is used to synthetically observe these different GC models with optical telescopes, perform PSF photometry and subsequently produce observed colour magnitude diagrams. We also use COCOA to compare the results from synthetic observations of a cluster model that has the same age and metallicity as the Galactic GC NGC 2808 with observations of the same cluster carried out with a 2.2 meter optical telescope. We find that COCOA can effectively simulate realistic observations and recover photometric data. COCOA has numerous scientific applications that maybe be helpful for both theoreticians and observers that work on star clusters. Plans for further improving and developing the code are also discussed in this paper.Comment: 18 pages, 12 figures, accepted for publication in MNRAS. Revised manuscript has a new title, better quality figures and many other improvements. COCOA can be downloaded from: https://github.com/abs2k12/COCOA (comments are welcome
    corecore