745 research outputs found

    Biomarkers in acute coronary syndromes and their role in diabetic patients

    Get PDF
    Diabetic patients with acute coronary syndromes are at high risk for cardiovascular complications but risk stratification in these patients remains challenging. Regularly, diabetic patients have a less typical clinical presentation, which could lead to delayed diagnosis and subsequent delayed initiation of treatment. Since diabetic patients derive particular benefit from aggressive anti-platelet therapy, early diagnostic and therapeutic risk stratification of these patients is of critical importance to improve their adverse outcome. Although the electrocardiogram remains a pivotal diagnostic tool in the evaluation of patients suspected of having an acute coronary syndrome, only significant STsegment changes provide reasonable prognostic information. Therefore, repeated assessment of circulating protein biomarkers represents a valuable diagnostic tool for improving efficacy and safety of decision-making in these patients. The combined use of biomarkers reflecting distinct pathophysiological aspects, such as myocardial necrosis, vascular inflammation, oxidative stress and neurohumoral activation, may significantly improve triage of patients with chest pain. These tools may identify those patients that are at particularly high risk for short-term and/or long-term cardiovascular events. Eventually, tailored medical and interventional treatment of diabetic patients should help to prevent these cardiac events in a cost-effective manner

    Разработка и исследование асинхронного электропривода с наблюдателем состояния

    Get PDF
    Выпускная квалификационная работа 109 с., 35 рис., 18 табл., 47 источников, 5 прил. Объектом исследования является дискретная математическая модель наблюдателя состояния полного порядка асинхронного двигателя. Цель работы – Разработка и исследование асинхронного электропривода с наблюдателем состояния В процессе исследования проводилось имитационное моделирование разработанной дискретной математической модели асинхронного двигателя и разработанной дискретной математической модели наблюдателя состояния полного порядкаFinal qualifying work 109 p., 35 fig., 18 tab., 47 sources, 5 adj. The object of research is a discrete mathematical model of the observer status of full order of the induction motor. Objective - Development and research of the asynchronous electric drive with observer status The study was conducted simulations developed discrete mathematical model of the induction motor and the developed mathematical model of discrete observer of full order stat

    Increased Cardiac Myocyte PDE5 Levels in Human and Murine Pressure Overload Hypertrophy Contribute to Adverse LV Remodeling

    Get PDF
    Background: The intracellular second messenger cGMP protects the heart under pathological conditions. We examined expression of phosphodiesterase 5 (PDE5), an enzyme that hydrolyzes cGMP, in human and mouse hearts subjected to sustained left ventricular (LV) pressure overload. We also determined the role of cardiac myocyte-specific PDE5 expression in adverse LV remodeling in mice after transverse aortic constriction (TAC). Methodology/Principal Findings: In patients with severe aortic stenosis (AS) undergoing valve replacement, we detected greater myocardial PDE5 expression than in control hearts. We observed robust expression in scattered cardiac myocytes of those AS patients with higher LV filling pressures and BNP serum levels. Following TAC, we detected similar, focal PDE5 expression in cardiac myocytes of C57BL/6NTac mice exhibiting the most pronounced LV remodeling. To examine the effect of cell-specific PDE5 expression, we subjected transgenic mice with cardiac myocyte-specific PDE5 overexpression (PDE5-TG) to TAC. LV hypertrophy and fibrosis were similar as in WT, but PDE5-TG had increased cardiac dimensions, and decreased dP/dtmax and dP/dtmin with prolonged tau (P<0.05 for all). Greater cardiac dysfunction in PDE5-TG was associated with reduced myocardial cGMP and SERCA2 levels, and higher passive force in cardiac myocytes in vitro. Conclusions/Significance: Myocardial PDE5 expression is increased in the hearts of humans and mice with chronic pressure overload. Increased cardiac myocyte-specific PDE5 expression is a molecular hallmark in hypertrophic hearts with contractile failure, and represents an important therapeutic target

    Plasticity and cardiovascular applications of multipotent adult progenitor cells

    Get PDF
    Cardiovascular disease is the leading cause of death worldwide, which has encouraged the search for new therapies that enable the treatment of patients in palliative and curative ways. In the past decade, the potential benefit of transplantation of cells that are able to substitute for the injured tissue has been studied with several cell populations, such as stem cells. Some of these cell populations, such as myoblasts and bone marrow cells, are already being used in clinical trials. The laboratory of CM Verfaillie has studied primitive progenitors, termed multipotent adult progenitor cells, which can be isolated from adult bone marrow. These cells can differentiate in vitro at the single-cell level into functional cells that belong to the three germ layers and contribute to most, if not all, somatic cell types after blastocyst injection. This remarkably broad differentiation potential makes this particular cell population a candidate for transplantation in tissues in need of regeneration. Here, we focus on the regenerative capacity of multipotent adult progenitor cells in several ischemic mouse models, such as acute and chronic myocardial infarction and limb ischemia

    Matrix metalloproteinases at key junctions in the pathomechanism of stroke

    Get PDF
    Matrix metalloproteinases play a crucial role in the remodelling of the extracellular matrix through direct degradation of its structural proteins and control of extracellular signaling. The most common cause of ischemic brain damage is an atherothrombotic lesion in the supplying arteries. The progress of the atherosclerotic plaque development and the related thrombotic complications are mediated in part by matrix metalloproteinases. In addition to their role in the underlying disease, various members of this protease family are upregulated in the acute phase of ischemic brain damage as well as in the post-ischemic brain recovery following stroke. This review summarizes the current understanding of the matrix metalloproteinase-related molecular events at three stages of the ischemic cerebrovascular disease (in the atherosclerotic plaque, in the neurovascular unit of the brain and in the regenerating brain tissue)

    Multipotent adult progenitor cells sustain function of ischemic limbs in mice

    Get PDF
    Despite progress in cardiovascular research, a cure for peripheral vascular disease has not been found. We compared the vascularization and tissue regeneration potential of murine and human undifferentiated multipotent adult progenitor cells (mMAPC-U and hMAPC-U), murine MAPC-derived vascular progenitors (mMAPC-VP), and unselected murine BM cells (mBMCs) in mice with moderate limb ischemia, reminiscent of intermittent claudication in human patients. mMAPC-U durably restored blood flow and muscle function and stimulated muscle regeneration, by direct and trophic contribution to vascular and skeletal muscle growth. This was in contrast to mBMCs and mMAPC-VP, which did not affect muscle regeneration and provided only limited and transient improvement. Moreover, mBMCs participated in a sustained inflammatory response in the lower limb, associated with progressive deterioration in muscle function. Importantly, mMAPC-U and hMAPC-U also remedied vascular and muscular deficiency in severe limb ischemia, representative of critical limb ischemia in humans. Thus, unlike BMCs or vascular-committed progenitors, undifferentiated multipotent adult progenitor cells offer the potential to durably repair ischemic damage in peripheral vascular disease patients

    Human matrix metalloproteinases: An ubiquitarian class of enzymes involved in several pathological processes

    Get PDF
    Human matrix metalloproteinases (MMPs) belong to the M10 family of the MA clan of endopeptidases. They are ubiquitarian enzymes, structurally characterized by an active site where a Zn(2+) atom, coordinated by three histidines, plays the catalytic role, assisted by a glutamic acid as a general base. Various MMPs display different domain composition, which is very important for macromolecular substrates recognition. Substrate specificity is very different among MMPs, being often associated to their cellular compartmentalization and/or cellular type where they are expressed. An extensive review of the different MMPs structural and functional features is integrated with their pathological role in several types of diseases, spanning from cancer to cardiovascular diseases and to neurodegeneration. It emerges a very complex and crucial role played by these enzymes in many physiological and pathological processes

    Comparative transcriptome analysis of embryonic and adult stem cells with extended and limited differentiation capacity

    Get PDF
    Comparison of the transcriptomes of pluripotent embryonic stem cells, multipotent adult progenitor cells and lineage restricted mesenchymal stem cells identified a unique gene expression profile of multipotent adult progenitor cells

    uPA deficiency exacerbates muscular dystrophy in MDX mice

    Get PDF
    Duchenne muscular dystrophy (DMD) is a fatal and incurable muscle degenerative disorder. We identify a function of the protease urokinase plasminogen activator (uPA) in mdx mice, a mouse model of DMD. The expression of uPA is induced in mdx dystrophic muscle, and the genetic loss of uPA in mdx mice exacerbated muscle dystrophy and reduced muscular function. Bone marrow (BM) transplantation experiments revealed a critical function for BM-derived uPA in mdx muscle repair via three mechanisms: (1) by promoting the infiltration of BM-derived inflammatory cells; (2) by preventing the excessive deposition of fibrin; and (3) by promoting myoblast migration. Interestingly, genetic loss of the uPA receptor in mdx mice did not exacerbate muscular dystrophy in mdx mice, suggesting that uPA exerts its effects independently of its receptor. These findings underscore the importance of uPA in muscular dystrophy
    corecore