17 research outputs found

    Machine-learning assisted swallowing assessment: a deep learning-based quality improvement tool to screen for post-stroke dysphagia

    Get PDF
    IntroductionPost-stroke dysphagia is common and associated with significant morbidity and mortality, rendering bedside screening of significant clinical importance. Using voice as a biomarker coupled with deep learning has the potential to improve patient access to screening and mitigate the subjectivity associated with detecting voice change, a component of several validated screening protocols.MethodsIn this single-center study, we developed a proof-of-concept model for automated dysphagia screening and evaluated the performance of this model on training and testing cohorts. Patients were admitted to a comprehensive stroke center, where primary English speakers could follow commands without significant aphasia and participated on a rolling basis. The primary outcome was classification either as a pass or fail equivalent using a dysphagia screening test as a label. Voice data was recorded from patients who spoke a standardized set of vowels, words, and sentences from the National Institute of Health Stroke Scale. Seventy patients were recruited and 68 were included in the analysis, with 40 in training and 28 in testing cohorts, respectively. Speech from patients was segmented into 1,579 audio clips, from which 6,655 Mel-spectrogram images were computed and used as inputs for deep-learning models (DenseNet and ConvNext, separately and together). Clip-level and participant-level swallowing status predictions were obtained through a voting method.ResultsThe models demonstrated clip-level dysphagia screening sensitivity of 71% and specificity of 77% (F1 = 0.73, AUC = 0.80 [95% CI: 0.78–0.82]). At the participant level, the sensitivity and specificity were 89 and 79%, respectively (F1 = 0.81, AUC = 0.91 [95% CI: 0.77–1.05]).DiscussionThis study is the first to demonstrate the feasibility of applying deep learning to classify vocalizations to detect post-stroke dysphagia. Our findings suggest potential for enhancing dysphagia screening in clinical settings. https://github.com/UofTNeurology/masa-open-source

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Gender differences in the use of cardiovascular interventions in HIV-positive persons; the D:A:D Study

    Get PDF
    Peer reviewe

    Search for High-energy Neutrinos from Binary Neutron Star Merger GW170817 with ANTARES, IceCube, and the Pierre Auger Observatory

    Get PDF

    Development and Validation of a Risk Score for Chronic Kidney Disease in HIV Infection Using Prospective Cohort Data from the D:A:D Study

    Get PDF
    Ristola M. on työryhmien DAD Study Grp ; Royal Free Hosp Clin Cohort ; INSIGHT Study Grp ; SMART Study Grp ; ESPRIT Study Grp jäsen.Background Chronic kidney disease (CKD) is a major health issue for HIV-positive individuals, associated with increased morbidity and mortality. Development and implementation of a risk score model for CKD would allow comparison of the risks and benefits of adding potentially nephrotoxic antiretrovirals to a treatment regimen and would identify those at greatest risk of CKD. The aims of this study were to develop a simple, externally validated, and widely applicable long-term risk score model for CKD in HIV-positive individuals that can guide decision making in clinical practice. Methods and Findings A total of 17,954 HIV-positive individuals from the Data Collection on Adverse Events of Anti-HIV Drugs (D:A:D) study with >= 3 estimated glomerular filtration rate (eGFR) values after 1 January 2004 were included. Baseline was defined as the first eGFR > 60 ml/min/1.73 m2 after 1 January 2004; individuals with exposure to tenofovir, atazanavir, atazanavir/ritonavir, lopinavir/ritonavir, other boosted protease inhibitors before baseline were excluded. CKD was defined as confirmed (>3 mo apart) eGFR In the D:A:D study, 641 individuals developed CKD during 103,185 person-years of follow-up (PYFU; incidence 6.2/1,000 PYFU, 95% CI 5.7-6.7; median follow-up 6.1 y, range 0.3-9.1 y). Older age, intravenous drug use, hepatitis C coinfection, lower baseline eGFR, female gender, lower CD4 count nadir, hypertension, diabetes, and cardiovascular disease (CVD) predicted CKD. The adjusted incidence rate ratios of these nine categorical variables were scaled and summed to create the risk score. The median risk score at baseline was -2 (interquartile range -4 to 2). There was a 1: 393 chance of developing CKD in the next 5 y in the low risk group (risk score = 5, 505 events), respectively. Number needed to harm (NNTH) at 5 y when starting unboosted atazanavir or lopinavir/ritonavir among those with a low risk score was 1,702 (95% CI 1,166-3,367); NNTH was 202 (95% CI 159-278) and 21 (95% CI 19-23), respectively, for those with a medium and high risk score. NNTH was 739 (95% CI 506-1462), 88 (95% CI 69-121), and 9 (95% CI 8-10) for those with a low, medium, and high risk score, respectively, starting tenofovir, atazanavir/ritonavir, or another boosted protease inhibitor. The Royal Free Hospital Clinic Cohort included 2,548 individuals, of whom 94 individuals developed CKD (3.7%) during 18,376 PYFU (median follow-up 7.4 y, range 0.3-12.7 y). Of 2,013 individuals included from the SMART/ESPRIT control arms, 32 individuals developed CKD (1.6%) during 8,452 PYFU (median follow-up 4.1 y, range 0.6-8.1 y). External validation showed that the risk score predicted well in these cohorts. Limitations of this study included limited data on race and no information on proteinuria. Conclusions Both traditional and HIV-related risk factors were predictive of CKD. These factors were used to develop a risk score for CKD in HIV infection, externally validated, that has direct clinical relevance for patients and clinicians to weigh the benefits of certain antiretrovirals against the risk of CKD and to identify those at greatest risk of CKD.Peer reviewe

    Data_Sheet_1_Machine-learning assisted swallowing assessment: a deep learning-based quality improvement tool to screen for post-stroke dysphagia.docx

    No full text
    IntroductionPost-stroke dysphagia is common and associated with significant morbidity and mortality, rendering bedside screening of significant clinical importance. Using voice as a biomarker coupled with deep learning has the potential to improve patient access to screening and mitigate the subjectivity associated with detecting voice change, a component of several validated screening protocols.MethodsIn this single-center study, we developed a proof-of-concept model for automated dysphagia screening and evaluated the performance of this model on training and testing cohorts. Patients were admitted to a comprehensive stroke center, where primary English speakers could follow commands without significant aphasia and participated on a rolling basis. The primary outcome was classification either as a pass or fail equivalent using a dysphagia screening test as a label. Voice data was recorded from patients who spoke a standardized set of vowels, words, and sentences from the National Institute of Health Stroke Scale. Seventy patients were recruited and 68 were included in the analysis, with 40 in training and 28 in testing cohorts, respectively. Speech from patients was segmented into 1,579 audio clips, from which 6,655 Mel-spectrogram images were computed and used as inputs for deep-learning models (DenseNet and ConvNext, separately and together). Clip-level and participant-level swallowing status predictions were obtained through a voting method.ResultsThe models demonstrated clip-level dysphagia screening sensitivity of 71% and specificity of 77% (F1 = 0.73, AUC = 0.80 [95% CI: 0.78–0.82]). At the participant level, the sensitivity and specificity were 89 and 79%, respectively (F1 = 0.81, AUC = 0.91 [95% CI: 0.77–1.05]).DiscussionThis study is the first to demonstrate the feasibility of applying deep learning to classify vocalizations to detect post-stroke dysphagia. Our findings suggest potential for enhancing dysphagia screening in clinical settings. https://github.com/UofTNeurology/masa-opensource</p

    Danziger Allgemeine Zeitung, 1925.01.24 nr 20

    Get PDF
    We present results from the first directed search for nontensorial gravitational waves. While general relativity allows for tensorial (plus and cross) modes only, a generic metric theory may, in principle, predict waves with up to six different polarizations. This analysis is sensitive to continuous signals of scalar, vector, or tensor polarizations, and does not rely on any specific theory of gravity. After searching data from the first observation run of the advanced LIGO detectors for signals at twice the rotational frequency of 200 known pulsars, we find no evidence of gravitational waves of any polarization. We report the first upper limits for scalar and vector strains, finding values comparable in magnitude to previously published limits for tensor strain. Our results may be translated into constraints on specific alternative theories of gravity. © 2018 American Physical Society

    Cumulative and current exposure to potentially nephrotoxic antiretrovirals and development of chronic kidney disease in HIV-positive individuals with a normal baseline estimated glomerular filtration rate: A prospective international cohort study

    No full text
    corecore