1,579 research outputs found

    Time-periodic phases in populations of nonlinearly coupled oscillators with bimodal frequency distributions

    Full text link
    The mean field Kuramoto model describing the synchronization of a population of phase oscillators with a bimodal frequency distribution is analyzed (by the method of multiple scales) near regions in its phase diagram corresponding to synchronization to phases with a time periodic order parameter. The richest behavior is found near the tricritical point were the incoherent, stationarily synchronized, ``traveling wave'' and ``standing wave'' phases coexist. The behavior near the tricritical point can be extrapolated to the rest of the phase diagram. Direct Brownian simulation of the model confirms our findings.Comment: Revtex,16 pag.,10 fig., submitted to Physica

    Wilson Loops in N=4 SYM and Fermion Droplets

    Get PDF
    The matrix models which are conjectured to compute the circle Wilson loop and its correlator with chiral primary operators are mapped onto normal matrix models. A fermion droplet picture analogous to the well-known one for chiral primary operators is shown to emerge in the large N limit. Several examples are computed. We find an interesting selection rule for the correlator of a single trace Wilson loop with a chiral primary operator. It can be non-zero only if the chiral primary is in a representation with a single hook. We show that the expectation value of the Wilson loop in a large representation labelled by a Young diagram with a single row has a first order phase transition between a regime where it is identical to a large column representation and a regime where it is a large wrapping number single trace Wilson loop.Comment: 32 pages, 2 figure

    Polarimetric Properties of Flux-Ropes and Sheared Arcades in Coronal Prominence Cavities

    Get PDF
    The coronal magnetic field is the primary driver of solar dynamic events. Linear and circular polarization signals of certain infrared coronal emission lines contain information about the magnetic field, and to access this information, either a forward or an inversion method must be used. We study three coronal magnetic configurations that are applicable to polar-crown filament cavities by doing forward calculations to produce synthetic polarization data. We analyze these forward data to determine the distinguishing characteristics of each model. We conclude that it is possible to distinguish between cylindrical flux ropes, spheromak flux ropes, and sheared arcades using coronal polarization measurements. If one of these models is found to be consistent with observational measurements, it will mean positive identification of the magnetic morphology that surrounds certain quiescent filaments, which will lead to a greater understanding of how they form and why they erupt.Comment: 22 pages, 8 figures, Solar Physics topical issue: Coronal Magnetis

    The Energy of Regular Black Hole in General Relativity Coupled to Nonlinear Electrodynamics

    Full text link
    According to the Einstein, Weinberg, and M{\o}ller energy-momentum complexes, we evaluate the energy distribution of the singularity-free solution of the Einstein field equations coupled to a suitable nonlinear electrodynamics suggested by Ay\'{o}n-Beato and Garc\'{i}a. The results show that the energy associated with the definitions of Einstein and Weinberg are the same, but M{\o}ller not. Using the power series expansion, we find out that the first two terms in the expression are the same as the energy distributions of the Reissner-Nordstr\"{o}m solution, and the third term could be used to survey the factualness between numerous solutions of the Einstein field eqautions coupled to a nonlinear electrodynamics.Comment: 11 page

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results

    Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration

    Full text link
    Extensive experimental data from high-energy nucleus-nucleus collisions were recorded using the PHENIX detector at the Relativistic Heavy Ion Collider (RHIC). The comprehensive set of measurements from the first three years of RHIC operation includes charged particle multiplicities, transverse energy, yield ratios and spectra of identified hadrons in a wide range of transverse momenta (p_T), elliptic flow, two-particle correlations, non-statistical fluctuations, and suppression of particle production at high p_T. The results are examined with an emphasis on implications for the formation of a new state of dense matter. We find that the state of matter created at RHIC cannot be described in terms of ordinary color neutral hadrons.Comment: 510 authors, 127 pages text, 56 figures, 1 tables, LaTeX. Submitted to Nuclear Physics A as a regular article; v3 has minor changes in response to referee comments. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    3D Coronal Density Reconstruction and Retrieving the Magnetic Field Structure during Solar Minimum

    Full text link
    Measurement of the coronal magnetic field is a crucial ingredient in understanding the nature of solar coronal phenomena at all scales. We employed STEREO/COR1 data obtained during a deep minimum of solar activity in February 2008 (Carrington rotation CR 2066) to retrieve and analyze the three-dimensional (3D) coronal electron density in the range of heights from 1.5 to 4 Rsun using a tomography method. With this, we qualitatively deduced structures of the coronal magnetic field. The 3D electron density analysis is complemented by the 3D STEREO/EUVI emissivity in the 195 A band obtained by tomography for the same CR. A global 3D MHD model of the solar corona was used to relate the reconstructed 3D density and emissivity to open/closed magnetic field structures. We show that the density maximum locations can serve as an indicator of current sheet position, while the locations of the density gradient maximum can be a reliable indicator of coronal hole boundaries. We find that the magnetic field configuration during CR 2066 has a tendency to become radially open at heliocentric distances greater than 2.5 Rsun. We also find that the potential field model with a fixed source surface (PFSS) is inconsistent with the boundaries between the regions with open and closed magnetic field structures. This indicates that the assumption of the potential nature of the coronal global magnetic field is not satisfied even during the deep solar minimum. Results of our 3D density reconstruction will help to constrain solar coronal field models and test the accuracy of the magnetic field approximations for coronal modeling.Comment: Published in "Solar Physics

    Measurement of D*+/- meson production in jets from pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    This paper reports a measurement of D*+/- meson production in jets from proton-proton collisions at a center-of-mass energy of sqrt(s) = 7 TeV at the CERN Large Hadron Collider. The measurement is based on a data sample recorded with the ATLAS detector with an integrated luminosity of 0.30 pb^-1 for jets with transverse momentum between 25 and 70 GeV in the pseudorapidity range |eta| < 2.5. D*+/- mesons found in jets are fully reconstructed in the decay chain: D*+ -> D0pi+, D0 -> K-pi+, and its charge conjugate. The production rate is found to be N(D*+/-)/N(jet) = 0.025 +/- 0.001(stat.) +/- 0.004(syst.) for D*+/- mesons that carry a fraction z of the jet momentum in the range 0.3 < z < 1. Monte Carlo predictions fail to describe the data at small values of z, and this is most marked at low jet transverse momentum.Comment: 10 pages plus author list (22 pages total), 5 figures, 1 table, matches published version in Physical Review

    Physics Opportunities with the 12 GeV Upgrade at Jefferson Lab

    Full text link
    This white paper summarizes the scientific opportunities for utilization of the upgraded 12 GeV Continuous Electron Beam Accelerator Facility (CEBAF) and associated experimental equipment at Jefferson Lab. It is based on the 52 proposals recommended for approval by the Jefferson Lab Program Advisory Committee.The upgraded facility will enable a new experimental program with substantial discovery potential to address important topics in nuclear, hadronic, and electroweak physics.Comment: 64 page
    corecore