306 research outputs found

    The Spectrum of the Partially Locked State for the Kuramoto Model

    Full text link
    We solve a longstanding stability problem for the Kuramoto model of coupled oscillators. This system has attracted mathematical attention, in part because of its applications in fields ranging from neuroscience to condensed-matter physics, and also because it provides a beautiful connection between nonlinear dynamics and statistical mechanics. The model consists of a large population of phase oscillators with all-to-all sinusoidal coupling. The oscillators' intrinsic frequencies are randomly distributed across the population according to a prescribed probability density, here taken to be unimodal and symmetric about its mean. As the coupling between the oscillators is increased, the system spontaneously synchronizes: the oscillators near the center of the frequency distribution lock their phases together and run at the same frequency, while those in the tails remain unlocked and drift at different frequencies. Although this ``partially locked'' state has been observed in simulations for decades, its stability has never been analyzed mathematically. Part of the difficulty is in formulating a reasonable infinite-N limit of the model. Here we describe such a continuum limit, and prove that the corresponding partially locked state is, in fact, neutrally stable, contrary to what one might have expected. The possible implications of this result are discussed

    Dynamical Phase Transitions In Driven Integrate-And-Fire Neurons

    Full text link
    We explore the dynamics of an integrate-and-fire neuron with an oscillatory stimulus. The frustration due to the competition between the neuron's natural firing period and that of the oscillatory rhythm, leads to a rich structure of asymptotic phase locking patterns and ordering dynamics. The phase transitions between these states can be classified as either tangent or discontinuous bifurcations, each with its own characteristic scaling laws. The discontinuous bifurcations exhibit a new kind of phase transition that may be viewed as intermediate between continuous and first order, while tangent bifurcations behave like continuous transitions with a diverging coherence scale.Comment: 4 pages, 5 figure

    An Inter-Networking Mechanism with Stepwise Synchronization for Wireless Sensor Networks

    Get PDF
    To realize the ambient information society, multiple wireless networks deployed in the region and devices carried by users are required to cooperate with each other. Since duty cycles and operational frequencies are different among networks, we need a mechanism to allow networks to efficiently exchange messages. For this purpose, we propose a novel inter-networking mechanism where two networks are synchronized with each other in a moderate manner, which we call stepwise synchronization. With our proposal, to bridge the gap between intrinsic operational frequencies, nodes near the border of networks adjust their operational frequencies in a stepwise fashion based on the pulse-coupled oscillator model as a fundamental theory of synchronization. Through simulation experiments, we show that the communication delay and the energy consumption of border nodes are reduced, which enables wireless sensor networks to communicate longer with each other

    Physics of the rhythmic applause

    Full text link
    We discuss in detail a human scale example of the synchronization phenomenon, namely the dynamics of the rhythmic applause. After a detailed experimental investigation, we describe the phenomenon with an approach based on the classical Kuramoto model. Computer simulations based on the theoretical assumptions, reproduce perfectly the observed dynamics. We argue that a frustration present in the system is responsible for the interesting interplay between synchronized and unsynchronized regimesComment: 5 pages, 5 figure

    Spatial patterns of desynchronization bursts in networks

    Full text link
    We adapt a previous model and analysis method (the {\it master stability function}), extensively used for studying the stability of the synchronous state of networks of identical chaotic oscillators, to the case of oscillators that are similar but not exactly identical. We find that bubbling induced desynchronization bursts occur for some parameter values. These bursts have spatial patterns, which can be predicted from the network connectivity matrix and the unstable periodic orbits embedded in the attractor. We test the analysis of bursts by comparison with numerical experiments. In the case that no bursting occurs, we discuss the deviations from the exactly synchronous state caused by the mismatch between oscillators

    Coupled Oscillators with Chemotaxis

    Full text link
    A simple coupled oscillator system with chemotaxis is introduced to study morphogenesis of cellular slime molds. The model successfuly explains the migration of pseudoplasmodium which has been experimentally predicted to be lead by cells with higher intrinsic frequencies. Results obtained predict that its velocity attains its maximum value in the interface region between total locking and partial locking and also suggest possible roles played by partial synchrony during multicellular development.Comment: 4 pages, 5 figures, latex using jpsj.sty and epsf.sty, to appear in J. Phys. Soc. Jpn. 67 (1998
    • ā€¦
    corecore