154 research outputs found

    Storing cycles in Hopfield-type networks with pseudoinverse learning rule: admissibility and network topology

    Full text link
    Cyclic patterns of neuronal activity are ubiquitous in animal nervous systems, and partially responsible for generating and controlling rhythmic movements such as locomotion, respiration, swallowing and so on. Clarifying the role of the network connectivities for generating cyclic patterns is fundamental for understanding the generation of rhythmic movements. In this paper, the storage of binary cycles in neural networks is investigated. We call a cycle Σ\Sigma admissible if a connectivity matrix satisfying the cycle's transition conditions exists, and construct it using the pseudoinverse learning rule. Our main focus is on the structural features of admissible cycles and corresponding network topology. We show that Σ\Sigma is admissible if and only if its discrete Fourier transform contains exactly r=rank(Σ)r={rank}(\Sigma) nonzero columns. Based on the decomposition of the rows of Σ\Sigma into loops, where a loop is the set of all cyclic permutations of a row, cycles are classified as simple cycles, separable or inseparable composite cycles. Simple cycles contain rows from one loop only, and the network topology is a feedforward chain with feedback to one neuron if the loop-vectors in Σ\Sigma are cyclic permutations of each other. Composite cycles contain rows from at least two disjoint loops, and the neurons corresponding to the rows in Σ\Sigma from the same loop are identified with a cluster. Networks constructed from separable composite cycles decompose into completely isolated clusters. For inseparable composite cycles at least two clusters are connected, and the cluster-connectivity is related to the intersections of the spaces spanned by the loop-vectors of the clusters. Simulations showing successfully retrieved cycles in continuous-time Hopfield-type networks and in networks of spiking neurons are presented.Comment: 48 pages, 3 figure

    Nonlinear Interaction of Transversal Modes in a CO2 Laser

    Full text link
    We show the possibility of achieving experimentally a Takens-Bogdanov bifurcation for the nonlinear interaction of two transverse modes (l=±1l = \pm 1) in a CO2CO_2 laser. The system has a basic O(2) symmetry which is perturbed by some symmetry-breaking effects that still preserve the Z2Z_2 symmetry. The pattern dynamics near this codimension two bifurcation under such symmetries is described. This dynamics changes drastically when the laser properties are modified.Comment: 16 pages, 0 figure

    Reduced dynamics and symmetric solutions for globally coupled weakly dissipative oscillators

    Get PDF
    This is a preprint of an article whose final and definitive form has been published in DYNAMICAL SYSTEMS © 2005 copyright Taylor & Francis; DYNAMICAL SYSTEMS is available online at: http://www.informaworld.com/openurl?genre=article&issn=1468-9367&volume=20&issue=3&spage=333Systems of coupled oscillators may exhibit spontaneous dynamical formation of attracting synchronized clusters with broken symmetry; this can be helpful in modelling various physical processes. Analytical computation of the stability of synchronized cluster states is usually impossible for arbitrary nonlinear oscillators. In this paper we examine a particular class of strongly nonlinear oscillators that are analytically tractable. We examine the effect of isochronicity (a turning point in the dependence of period on energy) of periodic oscillators on clustered states of globally coupled oscillator networks. We extend previous work on networks of weakly dissipative globally coupled nonlinear Hamiltonian oscillators to give conditions for the existence and stability of certain clustered periodic states under the assumption that dissipation and coupling are small and of similar order. This is verified by numerical simulations on an example system of oscillators that are weakly dissipative perturbations of a planar Hamiltonian oscillator with a quartic potential. Finally we use the reduced phase-energy model derived from the weakly dissipative case to motivate a new class of phase-energy models that can be usefully employed for understanding effects such as clustering and torus breakup in more general coupled oscillator systems. We see that the property of isochronicity usefully generalizes to such systems, and we examine some examples of their attracting dynamics

    Lagrangian Coherent Structures in tropical cyclone intensification

    Get PDF
    Atmos. Chem. Phys., 12 5483-5507The article of record as published may be located at http://dx.doi.org/10.5194/acpd-11-1-201

    Pattern formation in annular convection

    Full text link
    This study of spatio-temporal pattern formation in an annulus is motivated by two physical problems on vastly different scales. The first is atmospheric convection in the equatorial plane between the warm surface of the Earth and the cold tropopause, modeled by the two dimensional Boussinesq equations. The second is annular electroconvection in a thin semetic film, where experiments reveal the birth of convection-like vortices in the plane as the electric field intensity is increased. This is modeled by two dimensional Navier-Stokes equations coupled with a simplified version of Maxwell's equations. The two models share fundamental mathematical properties and satisfy the prerequisites for application of O(2)-equivariant bifurcation theory. We show this can give predictions of interesting dynamics, including stationary and spatio-temporal patterns

    Coupled Mean Flow-Amplitude Equations for Nearly Inviscid Parametrically Driven Surface Waves

    Full text link
    Nearly inviscid parametrically excited surface gravity-capillary waves in two-dimensional periodic domains of finite depth and both small and large aspect ratio are considered. Coupled equations describing the evolution of the amplitudes of resonant left- and right-traveling waves and their interaction with a mean flow in the bulk are derived, and the conditions for their validity established. In general the mean flow consists of an inviscid part together with a viscous streaming flow driven by a tangential stress due to an oscillating viscous boundary layer near the free surface and a tangential velocity due to a bottom boundary layer. These forcing mechanisms are important even in the limit of vanishing viscosity, and provide boundary conditions for the Navier-Stokes equation satisfied by the mean flow in the bulk. The streaming flow is responsible for several instabilities leading to pattern drift
    corecore