105 research outputs found

    Expansion of the BioCyc collection of pathway/genome databases to 160 genomes

    Get PDF
    The BioCyc database collection is a set of 160 pathway/genome databases (PGDBs) for most eukaryotic and prokaryotic species whose genomes have been completely sequenced to date. Each PGDB in the BioCyc collection describes the genome and predicted metabolic network of a single organism, inferred from the MetaCyc database, which is a reference source on metabolic pathways from multiple organisms. In addition, each bacterial PGDB includes predicted operons for the corresponding species. The BioCyc collection provides a unique resource for computational systems biology, namely global and comparative analyses of genomes and metabolic networks, and a supplement to the BioCyc resource of curated PGDBs. The Omics viewer available through the BioCyc website allows scientists to visualize combinations of gene expression, proteomics and metabolomics data on the metabolic maps of these organisms. This paper discusses the computational methodology by which the BioCyc collection has been expanded, and presents an aggregate analysis of the collection that includes the range of number of pathways present in these organisms, and the most frequently observed pathways. We seek scientists to adopt and curate individual PGDBs within the BioCyc collection. Only by harnessing the expertise of many scientists we can hope to produce biological databases, which accurately reflect the depth and breadth of knowledge that the biomedical research community is producing

    Metabolic Profiling of Water-Soluble Compounds from the Extracts of Dark Septate Endophytic Fungi (DSE) Isolated from Scots Pine (Pinus sylvestris L.) Seedlings Using UPLC–Orbitrap–MS

    Get PDF
    Endophytes are microorganisms living inside plant hosts and are known to be beneficial for the host plant vitality. In this study, we isolated three endophytic fungus species from the roots of Scots pine seedlings growing on Finnish drained peatland setting. The isolated fungi belonged to dark septate endophytes (DSE). The metabolic profiles of the hot water extracts of the fungi were investigated using Ultrahigh Performance Liquid Chromatography with Diode Array Detection and Electron Spray Ionization source Mass Spectrometry with Orbitrap analyzer (UPLC–DAD–ESI–MS–Orbitrap). Out of 318 metabolites, we were able to identify 220, of which a majority was amino acids and peptides. Additionally, opine amino acids, amino acid quinones, Amadori compounds, cholines, nucleobases, nucleosides, nucleotides, siderophores, sugars, sugar alcohols and disaccharides were found, as well as other previously reported metabolites from plants or endophytes. Some differences of the metabolic profiles, regarding the amount and identity of the found metabolites, were observed even though the fungi were isolated from the same host. Many of the discovered metabolites have been described possessing biological activities and properties, which may make a favorable contribution to the host plant nutrient availability or abiotic and biotic stress tolerance

    Metabolic Profiling of Water-Soluble Compounds from the Extracts of Dark Septate Endophytic Fungi (DSE) Isolated from Scots Pine (Pinus sylvestris L.) Seedlings Using UPLC–Orbitrap–MS

    Get PDF
    Endophytes are microorganisms living inside plant hosts and are known to be beneficial for the host plant vitality. In this study, we isolated three endophytic fungus species from the roots of Scots pine seedlings growing on Finnish drained peatland setting. The isolated fungi belonged to dark septate endophytes (DSE). The metabolic profiles of the hot water extracts of the fungi were investigated using Ultrahigh Performance Liquid Chromatography with Diode Array Detection and Electron Spray Ionization source Mass Spectrometry with Orbitrap analyzer (UPLC–DAD–ESI–MS–Orbitrap). Out of 318 metabolites, we were able to identify 220, of which a majority was amino acids and peptides. Additionally, opine amino acids, amino acid quinones, Amadori compounds, cholines, nucleobases, nucleosides, nucleotides, siderophores, sugars, sugar alcohols and disaccharides were found, as well as other previously reported metabolites from plants or endophytes. Some differences of the metabolic profiles, regarding the amount and identity of the found metabolites, were observed even though the fungi were isolated from the same host. Many of the discovered metabolites have been described possessing biological activities and properties, which may make a favorable contribution to the host plant nutrient availability or abiotic and biotic stress tolerance

    LEDAcrypt: QC-LDPC Code-Based Cryptosystems with Bounded Decryption Failure Rate

    Get PDF
    We consider the QC-LDPC code-based cryptosystems named LEDAcrypt, which are under consideration by NIST for the second round of the post-quantum cryptography standardization initiative. LEDAcrypt is the result of the merger of the key encapsulation mechanism LEDAkem and the public-key cryptosystem LEDApkc, which were submitted to the first round of the same competition. We provide a detailed quantification of the quantum and classical computational efforts needed to foil the cryptographic guarantees of these systems. To this end, we take into account the best known attacks that can be mounted against them employing both classical and quantum computers, and compare their computational complexities with the ones required to break AES, coherently with the NIST requirements. Assuming the original LEDAkem and LEDApkc parameters as a reference, we introduce an algorithmic optimization procedure to design new sets of parameters for LEDAcrypt. These novel sets match the security levels in the NIST call and make the C reference implementation of the systems exhibit significantly improved figures of merit, in terms of both running times and key sizes. As a further contribution, we develop a theoretical characterization of the decryption failure rate (DFR) of LEDAcrypt cryptosystems, which allows new instances of the systems with guaranteed low DFR to be designed. Such a characterization is crucial to withstand recent attacks exploiting the reactions of the legitimate recipient upon decrypting multiple ciphertexts with the same private key, and consequentially it is able to ensure a lifecycle of the corresponding key pairs which can be sufficient for the wide majority of practical purposes

    CORRIE: enzyme sequence annotation with confidence estimates

    Get PDF
    Using a previously developed automated method for enzyme annotation, we report the re-annotation of the ENZYME database and the analysis of local error rates per class. In control experiments, we demonstrate that the method is able to correctly re-annotate 91% of all Enzyme Classification (EC) classes with high coverage (755 out of 827). Only 44 enzyme classes are found to contain false positives, while the remaining 28 enzyme classes are not represented. We also show cases where the re-annotation procedure results in partial overlaps for those few enzyme classes where a certain inconsistency might appear between homologous proteins, mostly due to function specificity. Our results allow the interactive exploration of the EC hierarchy for known enzyme families as well as putative enzyme sequences that may need to be classified within the EC hierarchy. These aspects of our framework have been incorporated into a web-server, called CORRIE, which stands for Correspondence Indicator Estimation and allows the interactive prediction of a functional class for putative enzymes from sequence alone, supported by probabilistic measures in the context of the pre-calculated Correspondence Indicators of known enzymes with the functional classes of the EC hierarchy. The CORRIE server is available at:

    Erratum to: 36th International Symposium on Intensive Care and Emergency Medicine

    Get PDF
    [This corrects the article DOI: 10.1186/s13054-016-1208-6.]

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe
    corecore