
LEDAcrypt: QC-LDPC code-based cryptosystems
with bounded decryption failure rate

Marco Baldi1, Alessandro Barenghi2, Franco Chiaraluce1, Gerardo Pelosi2, and
Paolo Santini1

1 Università Politecnica delle Marche, Ancona, Italy
m.baldi@univpm.it, f.chiaraluce@univpm.it, p.santini@pm.univpm.it

2 Politecnico di Milano, Milano, Italy
alessandro.barenghi@polimi.it, gerardo.pelosi@polimi.it

Abstract. We consider the QC-LDPC code-based cryptosystems named
LEDAcrypt, which are under consideration by NIST for the second round
of the post-quantum cryptography standardization initiative. LEDAcrypt
is the result of the merger of the key encapsulation mechanism LEDAkem
and the public-key cryptosystem LEDApkc, which were submitted to
the first round of the same competition. We provide a detailed quan-
tification of the quantum and classical computational efforts needed to
foil the cryptographic guarantees of these systems. To this end, we take
into account the best known attacks that can be mounted against them
employing both classical and quantum computers, and compare their
computational complexities with the ones required to break AES, coher-
ently with the NIST requirements. Assuming the original LEDAkem and
LEDApkc parameters as a reference, we introduce an algorithmic opti-
mization procedure to design new sets of parameters for LEDAcrypt.
These novel sets match the security levels in the NIST call and make
the C99 reference implementation of the systems exhibit significantly
improved figures of merit, in terms of both running times and key sizes.
As a further contribution, we develop a theoretical characterization of
the decryption failure rate (DFR) of LEDAcrypt cryptosystems, which
allows new instances of the systems with guaranteed low DFR to be
designed. Such a characterization is crucial to withstand recent attacks
exploiting the reactions of the legitimate recipient upon decrypting mul-
tiple ciphertexts with the same private key, and consequentially it is able
to ensure a lifecycle of the corresponding key pairs which can be sufficient
for the wide majority of practical purposes.

1 Introduction

In this work, we provide theoretical and implementation advancements concern-
ing quasi-cyclic low-density parity-check (QC-LDPC) code-based cryptosystems
known as LEDAcrypt [3], which are under consideration by NIST for the sec-
ond round of standardization of post-quantum cryptographic systems [31]. These
new systems are built upon two previous systems named LEDAkem (low den-
sity parity-check code-based key encapsulation mechanism) and LEDApkc (low-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Politecnico di Milano

https://core.ac.uk/display/237171576?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 M. Baldi, A. Barenghi, F. Chiaraluce, G. Pelosi, P. Santini

density parity-check code-based public-key cryptosystem), which were submitted
to the first round of the NIST competition.

The mathematical problem on which these systems rely is the one of decod-
ing a random-looking linear block code. Such a problem belongs to the class of
NP-complete problems [6,22], which is known to contain problems without poly-
nomial time solution on a quantum computer. This line of research was initiated
by McEliece in 1978 [27], using Goppa codes as secret codes, and Niederreiter in
1986 [32], with a first attempt of introducing generalized Reed-Solomon (GRS)
codes in such framework. With the main aim of reducing the public key size, sev-
eral other families of codes have been considered during years, like quasi-cyclic
(QC) codes [12], low-density parity-check (LDPC) codes [30], quasi-dyadic (QD)
codes [28], QC-LDPC codes [4] and quasi-cyclic moderate-density parity-check
(QC-MDPC) codes [29].

The distinguishing points of the LEDAcrypt cryptosystems with respect to
other code-based post-quantum cryptosystems relies on the use of QC-LDPC
codes as secret codes and on an efficient decoding algorithm recently introduced
for codes of this kind [2]. The two main attacks that can be mounted against
these systems are a decoding attack (DA) and a key recovery attack (KRA) both
exploiting information set decoding (ISD) algorithms. In addition, recent attacks
based on the information leakage arising from the observation of the reaction of
someone decrypting ciphertexts with the same private key have proved to be
effective in reducing the lifecycle of keypairs used in LEDApkc and other code-
based cryptosystems characterized by a non-zero DFR [9,10,16].

In this work, we analyze all the aforementioned attacks and show how to tune
the parameter design of LEDAcrypt in order to foil them. Our contributions can
be summarized as follows.

(i) A quantification of the quantum and classical computational efforts re-
quired to break the Advanced Encryption Standard (AES) is provided. We rely
on typical circuit design estimates for the classical computing complexity, and
on the work by Grassl et al. [14] for the quantum computing complexity.

(ii) A new algorithmic approach to the design of LEDAcrypt instances with
parameters matching the NIST requirements, is introduced. The proposed ap-
proach employs finite regime estimations (as opposed to asymptotic bounds [21])
of the computational efforts required to perform ISD attacks as well as to execute
an exhaustive search in the parameter space of the algorithms. The parameters
designed through this method yield key sizes which are significantly smaller than
the original proposal to the NIST standardization effort.

(iii) A novel, closed-form upper bound on the DFR of the LEDAcrypt in-
stances is provided. This allows to include the DFR as constraint of the param-
eter design, to generate of keypairs with a sufficiently small DFR to provide
security against chosen ciphertext attacks, such as reaction attacks. We also re-
port sample sets of parameters targeting a DFR of 2−64 for long term keys in
LEDAcrypt, as well as a DFR smaller than 2−λ, where λ equals 128, 192 and
256, for the NIST security categories 1, 3 and 5, respectively.

LEDAcrypt: QC-LDPC code-based cryptosystems with bounded DFR 3

The paper is organized as follows. In Section 2 we briefly recall the LEDAcrypt
systems and the relevant notation. In Section 3 we define the security level bench-
marks we consider, in compliance with the NIST requirements. In Section 4 we
describe the attacks we take into account in the system design. In Section 5 we
describe an algorithmic procedure for the design of optimized sets of parameters
for these systems. In Section 6 we present the parameter sets resulting from the
algorithmic design procedure for keypairs to be used in ephemeral key encapsula-
tion mechanism (KEM)s. In Section 7 we report parameter sets that guarantee a
DFR lower than a given threshold for LEDAcrypt instances with long term keys
and indistinguishability under adaptive chosen ciphertext attack (IND-CCA2).
The latter are derived on the basis of a theoretical characterization of the DFR
of LEDAcrypt, which is reported in Appendix A. Finally, in Section 8 we draw
some conclusive remarks.

2 Preliminaries and notation

LEDAcrypt exploits a secret key (SK) formed by two binary matrices: H is the
binary parity-check matrix of a secret QC-LDPC code and Q is a secret trans-
formation matrix. The code described by H has length n = pn0 and dimension
k = p(n0 − 1), where p is a large prime integer and n0 is a small integer. The
matrix H is formed by a row of n0 circulant matrices with size p× p and weight
dv. The matrix Q is formed by n0 × n0 circulant matrices whose weights co-
incide with the entries of m̄ = [m0,m1, . . . ,mn0−1] for the first row and with
those of cyclically shifted versions of m̄ for the subsequent rows. Both H and
Q are sparse, and their product gives a sparse matrix H ′ = HQ that is a valid
parity-check matrix of the public code. Due to its sparsity, H ′ cannot be dis-
closed, thus the public key is a linearly transformed version of H ′ that hides its
sparsity. The LEDAcrypt cryptosystems hide the LDPC structure of H ′ multi-
plying all its circulant blocks by the multiplicative inverse of the last block of
H ′ itself, yielding the public key matrix pkNie.

Concerning the error correction capability of these codes, we recall that clas-
sical hard-decision decoding algorithms used for QC-LDPC codes are known as
Bit Flipping (BF) decoders. The LEDA cryptosystems employ a different de-
coding strategy which, while retaining a fix point BF approach, is more efficient
than the schoolbook BF. Such a procedure, known as Q-decoder [2], relies on the
fact that the (secret) parity-check matrix skNie = H ′ is obtained as the prod-
uct of two sparse matrices, i.e., H ′ = HQ, where H has size (n − k) × n and
number of non-zero elements in a row equal to dc = n0dv � n, while Q has size
n × n and number of non-zero elements in a column equal to m =

∑
imi � n.

Both the BF and the Q-decoder are not bounded-distance decoders, therefore
their decoding radius cannot be easily ascertained for a given, weight t, error,
resulting in a non-null decoding failure rate in practical scenarios. We denote as
t � n the number of errors that can be corrected by the code defined by H ′

with a sufficiently high probability, and the code itself is denoted as C(n, k, t).

4 M. Baldi, A. Barenghi, F. Chiaraluce, G. Pelosi, P. Santini

Given a value for t, the encryption is performed encoding the secret message
with the public code followed by the addition of a weight t error vector (in the
McEliece setting) or mapping the secret message into a weight-t binary error
vector and computing its syndrome through the public code (in the Niederre-
iter setting). The decryption of LEDAcrypt KEM performs syndrome decoding
on the received syndrome after multiplying it by the last circulant block of
skNie = H ′. The decoding retrieves the error vector e except for the cases where
a decoding failure takes place.

LEDAcrypt provides a KEM, named LEDAcrypt KEM, employing the Nieder-
reiter cryptosystem with One Wayness against Chosen Plaintext Attack (OW-
CPA) and an apt conversion to obtain a KEM with a twofold goal: (i) provide
a fast KEM with indistinguishability under chosen plaintext attack (IND-CPA)
and ephemeral keys for low latency session establishment with perfect forward
secrecy, and (ii) provide a KEM with IND-CCA2 and long term keys for scenarios
where key reuse may be desirable. We achieve this goal employing the same IND-
CCA2 conversion applied to the QC-LDPC Niederreiter cryptosystem for both
scenarios and achieving an appropriate DFR through code parameter tuning
and, where needed, an additional IND-CCA2 redundant encryption technique.
In particular, we employ the U�⊥m construction defined in [18], which starts from
a deterministic cryptosystem to build a KEM with IND-CCA2 in the Random
Oracle Model (ROM) with a tight reduction.

The same construction was proven to achieve IND-CCA2 in the Quantum
Random Oracle Model (QROM) in [19], with a tighter security reduction being
reported in [20], starting from the assumption that the underlying deterministic
cryptosystem is OW-CPA, as it is the case with our Niederreiter KEM. The
proofs in [18,19,20] take into account the possibility that the underlying cryp-
toscheme is characterized by a bounded correctness error δ. The instantiation
of the U�⊥m construction employing the QC-LDPC code-based Niederreiter cryp-
toscheme and a cryptographically secure hash, Hash(·), is reported in Fig. 1. We
chose, as the cryptographically secure hash to instantiate the U�⊥m construction,
the NIST standard SHA-3 hash function.

In case of a decoding failure [18,19,20], the decapsulation procedure com-
putes the returned outcome by hashing a secret value and the ciphertext. This
prevents an adversary from distinguishing when a failure occurs due to mal-
formed plaintext messages, i.e., messages with a number of asserted bits that is
not exactly equal to t, from when a failure occurs due to the intrinsic behavior
of the underlying QC-LDPC code. In other terms, the adversary cannot draw
any conclusion about the decoding abilities of the code at hand when he/she is
in control of composing messages that are not in the legitimate message space.

To provide IND-CCA2 for a given security level 2λ, the authors of [18] state
that it is required for the decryption function to have a correctness error δ ≤ 2−λ.
Given our goal of having both a fast and compact KEM with ephemeral keys
and IND-CPA guarantees, as well as a KEM with IND-CCA2, we will provide
different sets of parameters to be employed in the LEDAcrypt KEM construction,

LEDAcrypt: QC-LDPC code-based cryptosystems with bounded DFR 5

Algorithm 1: LEDAcrypt-KEM Encap
Input: pkNie: public key.
Output: c: encapsulated ephemeral key;

K: ephemeral key.

Data: p>2 prime, ordp(2)=p−1, n0 ≥ 2;
EncryptNie(e, pkNie): encryption of the Niederreiter cryptosystem;
E : set of all possible binary error vectors e=[e0| . . . |en0−1], wt(e)=t

1 e
$← E // uniform random picking

2 c← EncryptNie(e, pkNie)
3 K ← Hash(e)

4 return (c,K)

(a)

Algorithm 2: LEDAcrypt-KEM Decaps
Input: skNie: secret key

k: a secret random bitstring;
c: encapsulated key.

Output: K: decapsulated key.

Data: p>2 prime, ordp(2)=p−1, n0 ≥ 2;
DecryptNie(c, skNie): decryption function returning res = false on an
incorrect decoding, true and the original message e, otherwise.

1 {e, res} ← DecryptNie(c, skNie)
2 if res = true and wt(e) = t then
3 return Hash(e)
4 else
5 return Hash(c|k)

(b)

Fig. 1. Key encapsulation (a) and key decapsulation (b) primitives of LEDAcrypt KEM

which are characterized by a DFR low enough to foil statistical attacks and
achieve IND-CCA2 guarantees, without hindering practical deployment.

In addition to the LEDAcrypt KEM, LEDAcrypt provides a public-key cryp-
tosystem (PKC) with IND-CCA2 guarantees. While it is possible to employ
LEDAcrypt KEM in a Key Encapsulation Module + Data Encapsulation Mech-
anism (KEM+DEM) combination with a symmetric encryption primitive, we
note that such an approach may lead to a non-negligible ciphertext expansion
in case plaintexts are small in size. To overcome such an issue, LEDAcrypt PKC
provides a construction that starts from the QC-LDPC code-based McEliece
cryptosystem and derives a PKC exploiting the available capacity of the McEliece

6 M. Baldi, A. Barenghi, F. Chiaraluce, G. Pelosi, P. Santini

Public-Key Encryption (PKE) primitive to store the actual message content. It
is worth noting that, in the McEliece setting, the systematic form of the gen-
erator matrix of the public code included in the public key would easily allow
any observer to recover the information word embedded in an encrypted mes-
sage, without recovering the private key. Nevertheless, the conversion proposed
by Kobara and Imai in [23], with the purpose of maximizing the amount of
message encrypted by a McEliece PKC, allows IND-CCA2 guarantees to be pro-
vided in the ROM. Therefore, the confidentiality of the information word as
well as the security of the private key remain guaranteed by the hardness of the
NP-hard general decoding problem even when a systematic generator matrix is
employed as public key. For a detailed description of the basic encryption and
decryption transformations of LEDAcrypt PKC, as well as the mechanisms of
the γ-conversion scheme [23] that allow us to obtain an IND-CCA2 version of
LEDAcrypt PKC, we refer the reader to the LEDAcrypt specification [3].

3 Security level goals

The bar to be cleared to design parameters for post-quantum cryptosystems was
set by NIST to the computational effort required on either a classical or a quan-
tum computer to break the AES with a key size of λ bits, λ ∈ {128, 192, 256},
through an exhaustive key search. The three pairs of computational efforts re-
quired on a classical and quantum computer correspond to NIST Category 1, 3,
and 5, respectively [31]. Throughout the design of the parameters for LEDAcrypt
we ignore Categories 2 and 4: if a cipher matching those security levels is re-
quired, we advise to employ the parameters for Categories 3 and 5, respectively.

The computational worst-case complexity of breaking AES on a classical
computer can be estimated as 2λCAES, where CAES is the amount of binary op-
erations required to compute AES on a classical computer on a small set of
plaintexts, and match them with a small set of corresponding ciphertexts to val-
idate the correct key retrieval. Indeed, more than a single plaintext-ciphertext
pair is required to retrieve AES keys [14]. In particular, a validation on three
plaintext-ciphertext pairs should be performed for AES-128, on four pairs for
AES-192 and on five for AES-256.

Willing to consider a realistic AES implementation for exhaustive key search
purposes, we refer to [38], where the authors survey the state of the art of
Application-Specific Integrated Circuit (ASIC) AES implementations, employ-
ing the throughput per Gate Equivalent (GE) as their figure of merit. The most
performing AES implementations are the ones proposed in [38], and require
around 16ki GEs. We thus deem reasonable to estimate the computational com-
plexity of an execution of AES as 16ki binary operations. We are aware of the
fact that this is still a conservative estimate, as we ignore the cost of the inter-
connections required to carry the required data to the AES cores.

The computational complexity of performing an AES key retrieval employing
a quantum computer was measured first in [14], where a detailed implementation
of an AES breaker is provided. The computation considers an implementation

LEDAcrypt: QC-LDPC code-based cryptosystems with bounded DFR 7

Table 1. Classical and quantum computational costs of a key search on AES

NIST AES Key Size Classical Cost Quantum Cost [14]
Category (bits) (binary operations) (quantum gates)

1 128 2128 · 214 · 3 = 2143.5 1.16 · 281
3 192 2192 · 214 · 4 = 2208 1.33 · 2113
5 256 2256 · 214 · 5 = 2272.3 1.57 · 2145

of Grover’s algorithm [15] seeking the zeros of the function given by the binary
comparison of a set of AES ciphertexts with the encryption of their corresponding
plaintexts for all the possible key values. The authors of [14] chose to report the
complexity of the quantum circuit computing AES counting only the number
of the strictly needed Clifford and T gates, since they are the ones currently
most expensive to implement in practice. Selecting a different choice for the
set of quantum gates employed to realize the AES circuit may yield a different
complexity; however, the difference will amount to a reasonably small constant
factor, as it is possible to re-implement the Clifford and T gates at a constant
cost with any computationally complete set of quantum gates. We thus consider
the figures reported in [14] as a reference for our parameter design procedure.
In Table 1 we summarize the computational cost of performing exhaustive key
searches on all three AES variants (i.e., with 128, 192, and 256 bits long keys),
both considering classical and quantum computers.

4 Evaluated attacks

Let us briefly recall the set of attacks to be considered in the design of the
system parameters. In addition to those advanced attacks, we also consider some
basic attack procedures, such as exhaustive key search, which must be taken
into account in any automated cryptosystem parameter optimization, since they
impose some bounds on the system parameters.

An open source software implementation of the routines for computing the
complexity of the described attacks is publicly available [1].

4.1 Attacks based on exhaustive key search

Enumerating all the possible values for the secret key is, in principle, applicable
to any cryptosystem. The original LEDAkem and LEDApkc specification doc-
uments do not mention exhaustive key search, as it is possible to verify that
they are strictly dominated by other, less computationally demanding, attack
strategies such as the use of ISD algorithms.

In this parameter revision, in order to pose suitable bounds to the automated
parameter search we perform, we consider the application of an exhaustive enu-
meration strategy to each one of the two secret low-density binary matrices

8 M. Baldi, A. Barenghi, F. Chiaraluce, G. Pelosi, P. Santini

constituting the LEDAcrypt secret keys, i.e., H and Q. We recall that H is a
block circulant binary matrix constituted by 1 × n0 circulant blocks with size
equal to p bits, where n0 ∈ {2, 3, 4} and p is a prime such that ord2(p) = p− 1
(i.e., 2p−1 mod p = 1 mod p). Q is a binary block circulant matrix constituted
by n0 × n0 binary circulant blocks with size p. Willing to follow a conservative
approach, we design revised parameter sets such that it is not possible for an at-
tacker to enumerate all the possible matrices H or Q. While there is no standing
attack benefiting from such an enumeration, we deem reasonable adding such a
constraint to the design of the parameter sets as a peace-of-mind measure. In
our approach, to prevent attacks relying on the exhaustive search for the value
of either H or Q, we considered the remainder of the attack strategy which may
be employed to derive the matrix not being exhaustively searched for to have
a constant complexity (i.e. Θ(1)). This in turn implies that any attack strategy
which leverages the exhaustive search of H or Q to obtain useful information for
a key recovery attack will have a computational complexity matching or exceed-
ing the required security level.

Considering that each row of a circulant block of H has Hamming weight
dv, a straightforward counting argument yields]H =

(
p
dv

)n0 as the number of
possible choices for H. The number of possible choices for Q, denoted as]Q,
can be derived starting from the consideration that the weights of a row of each
circulant block in a block-row of Q are equal for all the rows up to a circular
shift. Such weights, denoted as {m0, . . . ,mn0−1}, allow to write the number of
possible choices for Q as]Q =

[∏
i∈{m0,...,mn0−1}

(
p
i

)]n0

.
Considering the case where the key recovery strategy exploits the enumer-

ation of either H or Q within an algorithm running on a quantum computer,
we consider the possibility of employing a Grover-like strategy to speedup the
enumeration of either H or Q. Assuming conservatively that such a strategy
exists, we consider the resistance against exhaustive key search with a quantum
computer to be

√
]H and

√
]Q for the search over H and Q, respectively. We

note that, for all parameter sets proposed in the original specification [3], the
cost of enumerating H and Q exceeds that of the best attacks via ISD.

4.2 Attacks based on information set decoding

It is well known that efficient message and key recovery attacks against McEliece
and Niederreiter cryptosystem variants based on low-density (LDPC) and moderate-
density (MDPC) parity-check codes are those exploiting ISD algorithms. Such
algorithms have a long development history, dating back to the early ’60s [34],
and provide a way to recover the error pattern affecting a codeword of a generic
random linear block code given a representation of the code in the form of either
its generator or parity-check matrix.

Despite the fact that the improvement provided by ISD over the straightfor-
ward enumeration of all the possible error vectors affecting the codeword is only
polynomial, employing ISD provides substantial speedups. It is customary for

LEDAcrypt: QC-LDPC code-based cryptosystems with bounded DFR 9

ISD variant proposers to evaluate the effectiveness of their attacks considering
the improvement on a worst-case scenario as far as the code rate and number of
corrected errors goes (see, for instance [5]). Such an approach allows deriving the
computational complexity as a function of a single variable, typically taken to be
the code length n, and obtaining asymptotic bounds for the behavior of the al-
gorithms. In our parameter design, however, we chose to employ non-asymptotic
estimates of the computational complexity of the ISD attacks. Therefore, we
explicitly compute the amount of time employing a non-asymptotic analysis of
the complexity of ISD algorithms, given the candidate parameters of the code
at hand. This approach also permits us to retain the freedom to pick rates for
our codes which are different from the worst-case one for decoding, thus explor-
ing different trade-offs in the choice of the system parameters. In case the ISD
algorithm has free parameters, we seek the optimal case by explicitly computing
the complexity for a large region of the parameter space, where the minimum
complexity resides. We consider the ISD variants proposed by Prange [34], Lee
and Brickell [24], Leon [25], Stern [36], Finiasz and Sendrier [11], and Becker,
Joux, May and Meurer (BJMM) [5], in our computational complexity evalua-
tion on classical computers. The reason for considering all of them is to avoid
concerns on whether their computational complexity in the finite-length regime
is already well approximated by their asymptotic behavior. In order to esti-
mate the computational complexity of ISD on quantum computing machines, we
consider the results reported in [8], which are the same employed in the original
specification [3]. Since complete and detailed formulas are available only for the
ISD algorithms proposed by Lee and Brickell, and Stern [36], we consider those
as our computational complexity bound. While asymptotic bounds show that
executing a quantum ISD derived from the May-Meurer-Thomae (MMT) algo-
rithm [26] is faster than a quantum version of Stern’s [21], we note that there is
no computational complexity formulas available for generic code and error rates.

Message recovery attacks through ISD. ISD algorithms can effectively
be applied to recover the plaintext message of any McEliece or Niederreiter
cryptosystem instance by retrieving the intentional error pattern used during
encryption. When a message recovery attack of this kind is performed against a
system variant exploiting quasi cyclic codes, like those at hand, it is known that a
speedup equal to the square root of the circulant block size can be achieved [35].
We consider such message recovery attacks in our parameter design, taking this
speedup into account in our computations.

Key recovery attacks through ISD. The most efficient way, and currently
the only known way, to exploit the sparsity of the parity checks that characterizes
the secret code H ′ = HQ in order to attack LEDAcrypt is trying to recover a
low-weight codeword of the dual of the public code. In fact, any sparse row of
H ′ is a low-weight codeword belonging to the dual of the public code, and such
codewords have a weight that is very close or equal to d′ = n0dv(

∑n0−1
i=0 mi),

which is comparatively small with respect to the codeword length n.

10 M. Baldi, A. Barenghi, F. Chiaraluce, G. Pelosi, P. Santini

Therefore, it is possible to search for such low-weight codewords through
ISD algorithms, which are far more efficient than trying all the

(
n
d′

)
possible

codewords. Indeed, the complexity of accomplishing this task through ISD is
equal to the one of decoding a code of the same length n, with dimension equal
to the redundancy r = n− k of the code at hand, and with d′ errors.

We consider such key recovery attacks in our parameter design, evaluating
their complexity for all the aforementioned ISD algorithms.

4.3 Reaction attacks

In addition to the proper sizing of the parameters of LEDAcrypt so that it with-
stands the aforementioned attacks, a last concern should be taken into account
regarding the lifetime of a LEDAcrypt key pair, when keys are not ephemeral.
In fact, whenever an attacker may gain access to a decryption oracle to which
he may pose a large amount of queries, the so-called reaction attack becomes
applicable. Reaction attacks recover the secret key by exploiting the inherent
non-zero DFR of QC-LDPC codes [9,10,17]. In particular, these attacks exploit
the correlation between the DFR of the code, the positions of the parity checks
in the private matrix, and the erroneous positions in the error vector. Indeed,
whenever e and either H ′ have pairs of ones placed at the same distances, the
decoder exhibits a DFR smaller than the average.

Such attacks require the collection of the outcome of decoding (success or
failure) on a ciphertext for which the attacker knows the distances in the support
of the error vector, for a significant number of ciphertexts, to achieve statistical
confidence in the result. The information on the decoding status is commonly
referred to as the reaction of the decoder, hence the name of the attack. The
strongest countermeasure against these attacks is to choose a proper set of system
parameters such that the DFR is negligible, which means an attacker would
require a computationally unfeasible amount of decryption actions to obtain
even a single decoding failure. It has been recently pointed out in [33] that some
mechanisms exist to generate error vectors able to artificially increase the DFR of
systems such as LEDAcrypt. However, such techniques require to known an error
vector causing a single decoding failure to be carried out. Therefore, choosing an
appropriately low DFR such attacks can be made as expensive as a key recovery
via ISD. In addition, these methods require the manipulation of error vectors,
which is not feasible when an IND-CCA2 secure conversion is adopted.

Instances with ephemeral keys and accidental key reuse LEDAcrypt
KEM instances with Perfect Forward Secrecy (PFS) and IND-CPA exploit ephemeral
keys that are renewed before each encryption. Hence, any key pair can be used
to decrypt one ciphertext only. In such a case, statistical attacks based on the
receivers’ reactions are inherently unfeasible on condition that the ephemeral
nature of the keys is strictly preserved.

Reaction attacks could instead be attempted in the case of an accidental reuse
of the keys in these instances. However, the parameter choices of LEDAcrypt

LEDAcrypt: QC-LDPC code-based cryptosystems with bounded DFR 11

KEM instances with ephemeral keys guarantee a DFR in the order of 10−8–10−9.
An attacker would need to collect DFR−1 ciphertexts encrypted with the same
key, on average, before observing one decryption failure. Hence, these instances
are protected against a significant amount of accidental key reuse. Moreover such
a low DFR provides a good practical reliability for the ephemeral KEM, as it is
very seldom needed to repeat a key agreement due to a decoding failure.

Instances with long term keys LEDAcrypt KEM and LEDAcrypt PKC in-
stances with long term keys employ a suitable conversion to achieve IND-CCA2.
The IND-CCA2 model assumes that an attacker is able to create a polynomially
bound number of chosen ciphertexts and ask for their decryption to an oracle
owning the private key corresponding to the public key used for their generation.
Note that such an attacker model includes reaction attacks, since the adversary
is able to observe a large number of decryptions related to the same keypair.

A noteworthy point is that the current existing IND-CCA2 constructions
require the DFR of the scheme to be negligible. Indeed, most IND-CCA2 at-
taining constructions require the underlying cryptosystem to be correct, i.e.,
Dsk(Epk(m)) = m, for all valid key pairs (pk, sk) and for all valid messages m.
Recent works [20,19] tackled the issue of proving a construction IND-CCA2 even
in the case of an underlying cipher affected by decryption failures. The results
obtained show that, in case the DFR is negligible in the security parameter, it
is possible for the construction to attain IND-CCA2 guarantees even in case of
decryption failures.

In systems with non-zero DFR, endowed with IND-CCA2 guarantees, attacks
such as crafting a ciphertext aimed at inducing decoding errors are warded off.
Therefore, our choice of employing an IND-CCA2 achieving construction to build
both our PKC and KEM, paired with appropriate parameters guaranteeing a
negligible DFR allows us to thwart ciphertext alteration attacks such as the ones
pointed out in the official comments to the first round of the NIST competition3.

5 Parameter design

In this section we describe an automated procedure for the design of parame-
ters for the QC-LDPC codes employed in LEDAcrypt. An open source software
implementation of the routines for computing the complexity of the described
attacks and perform parameter generation is available as public domain software
at [1]. The LEDAcrypt design procedure described in this section takes as in-
put the desired security level λc and λq, expressed as the base-2 logarithm of the
number of operations of the desired computational effort on a classical and quan-
tum computer, respectively. In addition to λc and λq, the procedure also takes
as input the number of circulant blocks, n0 ∈ {2, 3, 4}, forming the parity-check
matrix H, allowing tuning of the code rate. As a third and last parameter, the
3 https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/
documents/round-1/official-comments/LEDAkem-official-comment.pdf

https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/official-comments/LEDAkem-official-comment.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/official-comments/LEDAkem-official-comment.pdf

12 M. Baldi, A. Barenghi, F. Chiaraluce, G. Pelosi, P. Santini

procedure takes as input the value of ε, which tunes the estimate of the system
DFR for the IND-CPA case. We first consider instances with ephemeral keys,
which are designed using ε = 0.3: the resulting DFR values are in the range
10−9–10−8. The design of parameters for long term keys starts from the output
of the procedure employed for ephemeral key parameters, increasing the value
of p until the bounds specified in Section 7 provide a sufficiently small DFR.

The parameter design procedure outputs the size of the circulant blocks, p,
the weight of a column of H, dv, the number of intentional errors, t, the weights
of the n0 blocks of a row of Q, i.e., {m0,m1, . . . ,mn0−1}, with

∑n0−1
i=0 mi = m.

The procedure enforces the following constraints on the parameter choice:

– Classical and quantum exhaustive searches for the values of H or Q should
require at least 2λc and 2λq operations. This constraint binds the value of
the circulant block size p and the weight of a row of the circulant block, dv
for H and mi for Q, to be large enough.

– The minimum cost for a message recovery via ISD on both quantum and
classical computers must exceed 2λq and 2λc operations, respectively. This
constraint binds the values of the code length n = n0p, the code dimension
k = (n0 − 1)p and the number of errors t to be chosen such that an ISD on
the code C(n, k, t) requires more than 2λq or 2λc operations on a quantum
and a classical computer.

– The minimum cost for a key recovery attack via ISD on both quantum and
classical computers must exceed 2λq and 2λc operations, respectively. This
constraint binds the values of the code length n = n0p, the code redundancy
r = p and the number of ones in a row of HQ, d′vn0, with d′v = dvm to be
chosen such that an ISD on the code C(n, r, d′vn0) requires more than 2λq or
2λc operations on a quantum and classical computer.

– The choice of the circulant block size, p, should be such that p is a prime
number and ord2(p) = p − 1 in order to ensure non-singularity of the last
block of H ′.

– The choice of the circulant block size, p, and parity-check matrix density,
n0dv, must allow the code to correct the required amount of errors. This is
tested through the computation of the decoding threshold, as described in
the original specification [3].

– The weights of the circulant blocks of Q must be such that the permanent of
the matrix of the block weights is odd, which guarantees the existence of its
multiplicative inverse (see the full LEDAcrypt specification [3] for details).

We report a synthetic description of the procedure implemented in the publicly
available code as Algorithm 3. The rationale of the procedure4 is to proceed in
refining the choice for p, t, dv, and all the mi’s at fix point, considering only
values of p respecting ord2(p) = p− 1.

4 Note that, in the pseudocode of Algorithm 3, the loop construct
while(< condition >) . . . iterates the execution of instructions in the loop body when
the condition is true, while the loop construct Repeat . . .until(< condition >)
iterates the instructions in the loop body when the condition is false.

LEDAcrypt: QC-LDPC code-based cryptosystems with bounded DFR 13

Algorithm 3: LEDAcrypt Parameter Generation
Input: λc, λq :desired security levels against classical and quantum attacks, respectively;

ε: safety margin on the minimum size of a circulant block of the secret parity-check
matrix H, named pth = p(1 + ε), where p is the size of a circulant block, so that the
code is expected to correct all the errors with acceptable DFR;
n0: number of circulant blocks of the p× n0p parity-check matrix H of the code.
The Q matrix is constituted by n0 × n0 circulant blocks as well, each of size p.

Output: p: size of a circulant block; t: number of errors; dv : weight of a column of the
parity matrix H; 〈m0,m1, . . . ,mn0−1〉: an integer partition of m, the weight of a
row of the matrix Q. Each mi is the weight of a block of Q.

Data: NextPrime(x): subroutine returning the first prime p larger than the value of the
input parameter and such that ord2(p) = p− 1;
C-ISD-Cost(n, k, t),Q-ISD-Cost(n, k, t): subroutines returning the costs of the
fastest ISDs employing a classical and a quantum computer, respectively;
]Q: number of valid n0p × n0p block circulant matrices,

]Q =

(∏
i∈{m0,...,mn0−1}

(p
i

))n0
;

]H: number of valid p × n0p block circulant matrices,]H =
(p
dv

)n0 ;
FindmPartition(m,n0): subroutine returning two values. The former one is a sequence
of numbers composed as the last integer partition of m in n0 addends ordered
according to the lexicographic order of the reverse sequences, i.e.,
〈m0,m1, . . . ,mn0−1〉, (this allows to get a sequence of numbers as close as possible
among them and sorted in decreasing order). The latter returned value is a Boolean
value PermanentOk which points out if the partition is legit (true) or not (false).

1 p← 1
2 repeat
3 p← NextPrime(p)
4 n← n0p, k ← (n0 − 1)p, r ← p

5 t← 1

6 while
(
t ≤ r ∧

(
C-ISD-Cost(n, k, t) < 2λc ∨Q-ISD-Cost(n, k, t) < 2λq

))
do

7 t← t+ 1

8 d′v ← 4
9 repeat

10 dv ←
⌊√

d′v
⌋
− 1− (

⌊√
d′v
⌋
mod 2)

11 repeat
12 dv ← dv + 2

13 m←
⌈
d′v
dv

⌉
14 〈m0,m1, · · · ,mn0−1〉, PermanentOk← FindmPartition(m,n0)

15 until PermanentOk = true ∨ (m < n0)
16 if (m > n0) then
17 SecureOk← C-ISD-Cost(n, r, n0d

′
v) ≥ 2λc ∧Q-ISD-Cost(n, r, n0d

′
v) ≥ 2λq

18 SecureOk← SecureOk ∧]H ≥ 2λc ∧
√
]H ≥ 2λq ∧]Q ≥ 2λc ∧

√
]Q ≥ 2λq

19 else
20 SecureOk← false

21 d′v ← d′v + 1

22 until
(
SecureOk = true ∨ d′vn0 ≥ p

)
23 if (SecureOk = true) then
24 pth ← BFth(n0,mdv, t)
25 else
26 pth ← p

27 until p > pth(1 + ε)

28 return (p, t, dv,m, 〈m0,m1, · · · ,mn0−1〉)

Since there are cyclic dependencies among the constraints on p, t, dv and m,
the search for the parameter set is structured as a fix point solver iterating on a
test on the size of p (lines 2–28).

14 M. Baldi, A. Barenghi, F. Chiaraluce, G. Pelosi, P. Santini

The loop starts by analyzing the next available prime p extracted from a list
of pre-computed values such that ord2(p) = p− 1, and sorted in ascending order
(line 3). The length, n, dimension, k, and redundancy, r = n − k, of the code
are then assigned to obtain a code rate equal to 1 − 1

n0
(line 4). Subsequently,

the procedure for the parameter choice proceeds executing a loop (lines 5–7) to
determine a value t, with t < r, such that a message recovery attack on a generic
code C(n, k, t) requires more than the specified amount of computational efforts
on both classical and quantum computers.

To determine the weight of a column of H, i.e., dv and the weight of a
column of Q, i.e., m, with m =

∑n0−1
i=0 mi, the procedure moves on searching

for a candidate value of d′v, where d′v = dvm and d′vn0 is the weight of a row of
HQ. Given a value for d′v (line 8 and line 21), the value of dv is computed as the
smallest odd integer greater than the square root of d′v (line 10). The condition of
dv being odd is sufficient to guarantee the non singularity of the circulant blocks
of H, while the square root computation is meant to distribute the weight d′v
evenly between the weight of a column of H and the weight of a column of Q.
The weight of a column of Q, i.e., m, is then computed through the loop in lines
11–15. Specifically, the value of m must allow a partition into n0 integers (i.e.,
m =

∑n0−1
i=0 mi) such that the permanent of the circulant integer matrix having

the said partition as a row is odd, for the matrix Q to be invertible [3]. Therefore,
in the loop body the value of m is assumed as

⌈
d′v
dv

⌉
(line 13) and subsequently

checked to derive the mentioned partition in n0 integers. The loop (lines 11–15)
ends when either a valid partition of m is found or m turns out to be smaller
than the number of blocks n0 (as finding a partition in this case would be not
possible increasing only the value of dv).

Algorithm 3 proceeds to test for the security of the cryptosystem against key
recovery attacks and key enumeration attacks on both classical and quantum
computers (lines 16–18). If a legitimate value for m has not been found, the
current parameters of the cryptoystem are deemed insecure (line 20). In line 21,
the current value of d′v is incremented by one and another iteration of the loop
is executed if the security constraints are not met with the current parameters
(i.e., SecureOk = false) and it is still viable to perform another iteration to
check the updated value of d′v, i.e., d′vn0 < p (line 22).

If suitable values for the code parameters from a security standpoint are
found, the algorithm computes the minimum value of p, named pth, such that the
decoding algorithm is expected to correct t errors, according to the methodology
reported in [3] (see lines 23–24); otherwise, the value of pth is forced to be equal
to p (lines 25–26) in such a way that another iteration of the outer loop of
Algorithm 3 is executed through picking a larger value of p and new values for
the remaining parameters.

We note that, while the decoding threshold provides a sensible estimate of
the fact that the QC-LDPC code employing the generated parameters will cor-
rect the computed amount of errors, this is no substitute for a practical DFR
evaluation, which is then performed through Monte Carlo simulations. Willing

LEDAcrypt: QC-LDPC code-based cryptosystems with bounded DFR 15

Table 2. Parameter sizes for LEDAcrypt KEM obtained with the parameter design
tool, compared to those of LEDAkem appearing in the original specification

LEDAcrypt KEM LEDAkem original
NIST n0 p t dv m errors out of p t dv m errors out of
Cat. decodes decodes

1
2 14, 939 136 11 [4, 3] 14 out of 1.2 · 109 27, 779 224 17 [4, 3] 19 out of 2.22 · 109
3 7, 853 86 9 [4, 3, 2] 0 out of 1 · 109 18, 701 141 19 [3, 2, 2] 0 out of 1 · 109
4 7, 547 69 13 [2, 2, 2, 1] 0 out of 1 · 109 17, 027 112 21 [4, 1, 1, 1] 0 out of 1 · 109

3
2 25, 693 199 13 [5, 3] 2 out of 1 · 109 57, 557 349 17 [6, 5] 0 out of 1 · 108
3 16, 067 127 11 [4, 4, 3] 0 out of 1 · 109 41, 507 220 19 [3, 4, 4] 0 out of 1 · 108
4 14, 341 101 15 [3, 2, 2, 2] 0 out of 1 · 109 35, 027 175 17 [4, 3, 3, 3] 0 out of 1 · 108

5
2 36, 877 267 11 [7, 6] 0 out of 1 · 109 99, 053 474 19 [7, 6] 0 out of 1 · 108
3 27, 437 169 15 [4, 4, 3] 0 out of 1 · 109 72, 019 301 19 [7, 4, 4] 0 out of 1 · 108
4 22, 691 134 13 [4, 3, 3, 3] 0 out of 1 · 109 60, 509 239 23 [4, 3, 3, 3] 0 out of 1 · 108

to target a DFR of 10−9, we enlarged heuristically the value of p until the target
DFR was reached (adding 5% of the value of p). Enlargements took place for:

– Category 1: n0 = 2: 6 times, n0 = 3: 1 time, n0 = 4: 1 time
– Category 3: n0 = 2: 4 times, n0 = 3: 0 times, n0 = 4: 0 times
– Category 5: n0 = 2: 0 times, n0 = 3: 0 times, n0 = 4: 0 times.

The C++ tool5 provided follows the computation logic described in Algorithm 3,
but it is optimized to reduce the computational effort as follows:

– The search for the values of t and d′v respecting the constraints is performed
by means of a dichotomic search instead of a linear scan of the range.

– The computations of the binomial coefficients employ a tunable memorized
table to avoid repeated re-computation, plus a switch to Stirling’s approxi-
mation (considering the approximation up to the fourth term of the series)
only in the case where the value of

(
a
b

)
is not available in the table and

b > 9. In case the value of the binomial is not available in the table and
b < 9 the result is computed with the iterative formula for the binomial,
to avoid the discrepancies between Stirling’s approximation and the actual
value for small values of b.

– The values of p respecting the constraint ord2(p) = p− 1 are pre-computed
up to 159, 979 and stored in a lookup table.

– The search for the value of p is not performed scanning linearly the afore-
mentioned table. The strategy to find the desired p starts by setting the
value of the candidate for the next iteration to NextPrime(d(1 + ε)pthe)
up to finding a value of p, p̄ which satisfies the constraints. Subsequently

5 The C++ tool relies on Victor Shoup’s NTL library (available at https://www.
shoup.net/ntl/), in particular for the arbitrary precision integer computations and
the tunable precision floating point computations, and requires a compiler supporting
the C++11 standard.

https://www.shoup.net/ntl/
https://www.shoup.net/ntl/

16 M. Baldi, A. Barenghi, F. Chiaraluce, G. Pelosi, P. Santini

Table 3. Computational cost of an exhaustive enumeration attack on either the matrix
H or the matrix Q. The quantum execution model considers the possibility of attaining
the full speedup yielded by the application of Grover’s algorithm to the computation

NIST H Enumeration cost Q enumeration cost
Cat. n0 (log2]binary op.s) (log2]quantum gates)

Classical Quantum Classical Quantum

1
2 254.55 127.27 179.79 89.89
3 295.93 147.96 326.84 163.42
4 539.64 269.82 348.68 174.34

3
2 315.79 157.89 247.34 123.67
3 385.30 192.65 425.80 212.90
4 667.42 333.71 474.74 237.37

5
2 283.24 145.62 350.84 175.42
3 542.70 271.35 451.27 225.63
4 622.26 311.13 703.06 351.53

the algorithm starts scanning the list of primes linearly from p̄ backwards to
find the smallest prime which satisfies the constraints.

6 LEDAcrypt instances with ephemeral keys

In Table 2 we provide parameters for LEDAcrypt KEM instances employing
ephemeral keys, and compare them with those of LEDAkem appearing in the
original specification. This shows how the new parameterization is tighter and
enables a considerable reduction in the key sizes. Deriving them took approxi-
mately a day for all the parameter sets with n0 ∈ {3, 4} and approximately a
month for all the parameter sets with n0 = 2 on a dual socket AMD EPYC 7551
32-Core CPU. The memory footprint for each parameter seeking process was
below 100 MiB.

6.1 Resulting computational complexity of attacks

When an algorithmic procedure is exploited for the design of parameter sets,
as in our case, some constraints on the choice of the row/column weights of
H and Q must be imposed in such a way as to make enumeration of either
H or Q unfeasible to an attacker. Therefore, enumeration attacks of the type
described in Section 4.1 must be taken into account. In Table 3 we report the
computational cost of performing such an exhaustive enumeration, both with a
classical and a quantum computer. The latter has been obtained by applying
the speedup due to Grover’s algorithm to the complexity computed considering
a classical computer. From the results in Table 3 it is straightforward to note
that an exhaustive search on either H or Q is above the required computational
effort.

LEDAcrypt: QC-LDPC code-based cryptosystems with bounded DFR 17

Table 4. Cost of performing a message recovery attack, i.e., an ISD on the code
C(n0p, (n0 − 1)p, t), for LEDAcrypt instances with the parameters p, t reported in Ta-
ble 2, employing the considered ISD variants.

NIST Classical computer Quantum computer
Cat. n0 (log2]binary op.s) (log2]quantum gates)

Prange [34] L-B [24] Leon [25] Stern [36] F-S [11] BJMM [5] Q-LB [8] Q-Stern [8]

1
2 169.05 158.23 156.35 148.59 148.57 144.37 97.26 98.67
3 167.72 157.37 154.51 147.67 147.65 144.29 96.14 97.55
4 169.62 159.40 155.86 149.32 149.31 145.98 97.47 98.22

3
2 234.11 222.19 220.26 210.42 210.41 207.17 130.22 131.62
3 235.32 223.84 220.82 211.91 211.90 208.71 130.67 132.07
4 235.98 224.66 220.97 212.39 212.39 209.10 131.26 132.66

5
2 303.56 290.79 288.84 277.40 277.39 274.54 165.18 166.58
3 303.84 291.53 288.42 277.98 277.98 274.34 165.48 166.88
4 303.68 291.54 287.78 277.67 277.67 274.91 165.52 166.92

As described in Section 4.2, the two main attacks that can be mounted against
the considered systems are message recovery attacks and key recovery attacks
based on ISD algorithms. Table 4 and Table 5 report the complexities of these at-
tacks against LEDAcrypt instances employing the parameters p, t in Table 2. An
interesting point to be noted is that, while providing clear asymptotic speedups,
the improvements to the ISD algorithms proposed since Stern’s [36] are only able
to achieve a speedup between 22 and 24 when their finite regime complexities
are considered in the range of values concerning LEDAcrypt cryptosystem pa-
rameters. Concerning quantum ISDs, it is interesting to notice that the quantum
variant of the Stern’s algorithm as described by de Vries [8] does not achieve an
effective speedup when compared against a quantum transposition of Lee and
Brickell’s ISD. Such a result can be ascribed to the fact that the reduction in the
number of ISD iterations which can be obtained by Stern’s ISD is mitigated by
the fact that the applying Grover’s algorithm to the iterations themselves cuts
their number (and Stern’s reduction factor) quadratically [7].
Comparing the computational complexities of the message recovery attack (Table
4) and the key recovery attack (Table 5), we note that performing a message
recovery attack is almost always easier than the corresponding key recovery
attack on the same parameter set, albeit by a small margin.

7 LEDAcrypt instances with long term keys

For LEDAcrypt instances employing long term keys, we need that the DFR is
sufficiently small to enable IND-CCA2. However, such small values of DFR can-
not be assessed through Monte Carlo simulations. Hence, for these instances
we consider a Q-decoder performing two iterations and exploit the analysis re-
ported in Appendix A in order to characterize its DFR. To this end, we consider
a two-stage rejection sampling during key generation, that is:

18 M. Baldi, A. Barenghi, F. Chiaraluce, G. Pelosi, P. Santini

Table 5. Cost of performing a key recovery attack, i.e., an ISD on the code
C(n0p, p, n0dvm), for the revised values of the parameters p, n0, dv,m reported in Ta-
ble 2, employing the considered ISD variants

NIST Classical computer Quantum computer
Cat. n0 (log2]binary op.s) (log2]quantum gates)

Prange [34] L-B [24] Leon [25] Stern [36] F-S [11] BJMM [5] Q-LB [8] Q-Stern [8]

1
2 180.25 169.06 167.24 158.76 158.75 154.94 99.21 100.62
3 169.36 157.78 156.53 147.71 147.68 144.08 93.93 95.34
4 179.86 167.79 165.69 157.13 157.10 153.01 99.71 101.12

3
2 237.85 225.77 223.87 213.72 213.71 210.64 128.35 129.75
3 241.70 228.98 227.03 216.59 216.57 213.18 130.56 131.96
4 254.92 241.73 238.97 228.80 228.78 224.76 137.60 139.01

5
2 315.08 302.11 300.19 288.35 288.34 285.71 167.04 168.44
3 320.55 306.93 304.48 292.78 292.77 289.00 170.31 171.71
4 312.68 298.84 295.66 284.59 284.58 280.91 166.82 168.22

1. Only pairs of H and Q such that the weight of a column of H ′ = HQ is
dvm.

2. Only pairs of H and Q are retained for which the condition (2) in Ap-
pendix A.1 guaranteeing low enough DFR is verified.

The first rejection sampling is useful to achieve a constant computational
effort for message and key recovery attacks. In addition, it simplifies the second
rejection sampling, which can take advantage of a special case of the analysis
reported in Appendix A. Then, the second rejection sampling is performed to
ensure that the generated key pair can achieve with two iterations of the Q-
decoder the correction of all residual errors of weight ≤ t̄ left by the first decoder
iteration. Such a property can be obtained with the knowledge of the generated
matrices H and Q alone. If the above condition is not satisfied the generated key
pair is discarded, and the procedure is repeated until a valid key pair is found.
For valid key pairs, achieving a desired target DFR value, DFR, is guaranteed
by the choice of code parameters such that the first iteration of the Q-decoder
results in at most t̄ residual errors with probability > 1−DFR.

Given a chosen target DFR and a set of parameters for a LEDAcrypt instance,
we are able to evaluate the amount of secret keys which allow achieving the
desired DFR target. Such a procedure is integrated in the key generation process
for LEDAcrypt instances with long term keys, where the concern on the DFR is
actually meaningful, as opposed to instances with ephemeral key pairs.

Some choices are reported in Table 6, by imposing a DFR bounded by either
2−64 or 2−λ, where λ equals 128, 192, 256 for NIST Category 1, 3, 5, respec-
tively. The proposed choices aim at parameter sets for which the probability of
drawing a random secret key achieving the DFR target is significant to mini-
mize key generation overhead. To design these parameters, we start from the
ones obtained through the automated parameter optimization procedure used
for instances with ephemeral keys previously described, while keeping the prod-
uct mdv constant or slightly increased. Then, we proceed by increasing the size

LEDAcrypt: QC-LDPC code-based cryptosystems with bounded DFR 19

Table 6. Parameters for the LEDAcrypt KEM with long term keys and the LEDAcrypt
PKC employing a two-iteration Q-decoder matching a DFR equal to 2−64 and a DFR
equal to 2−λ, where λ equals 128, 192, 256 for NIST Category 1, 3, 5, respectively

NIST
n0 DFR p t dv m t̄

No. of keys out of 100
b0Category with the required DFR

1
2 2−64 35, 899 136 9 [5, 4] 4 95 44
2 2−128 52, 147 136 9 [5, 4] 4 95 43

3
2 2−64 57, 899 199 11 [6, 5] 5 92 64
2 2−192 96, 221 199 11 [6, 5] 5 92 64

5
2 2−64 89, 051 267 13 [7, 6] 6 93 89
2 2−256 152, 267 267 13 [7, 6] 6 93 88

of the circulant blocks, until we obtain a probability smaller than the given tar-
get that the number of bit errors that are left uncorrected by the first iteration
is ≤ t̄. In particular, such a probability is computed by considering all possible
choices for the flipping threshold of the first iteration, and by taking the optimal
one (i.e., the one corresponding to the maximum value of the probability). Note
that such changes may only impact positively on the security margin against
ISD attacks and key enumeration attacks.

For any set of parameters so designed, we draw 100 key pairs at random, and
evaluate how many of them satisfy the condition (2) in Appendix A. As it can
be seen from the results reported in Table 6, the parameter sets we determined
are able to achieve a DFR < 2−64 increasing the key size by a factor ranging
from 2× to 3× with respect to the case of ephemeral key pairs.

The obtained LEDAcrypt parameterizations show that it is possible to achieve
the desired DFR discarding an acceptable number of key pairs, given proper tun-
ing of the parameters. The parameter derivation procedure for these LEDAcrypt
instances can also be automated, which could be advantageous in terms of flex-
ibility in finding optimal parameters for a given code size or key rejection rate.

8 Conclusion

In this work we presented a threefold contribution on code-based cryptosys-
tems relying on QC-LDPC codes, such as the NIST post-quantum candidate
LEDAcrypt. First of all, we quantify the computational effort required to break
AES both via classical and quantum computation, providing a computational ef-
fort to be matched in post-quantum cryptosystem parameter design. Our second
contribution is an automated optimization procedure for the parameter gener-
ation of ephemeral-key cryptosystem parameters for LEDAcrypt, providing a
10−9–10−8 DFR, low enough for practical use. Our third contribution is a closed
form characterization of the decoding strategy employed in the LEDAcrypt sys-
tems that allows to obtain an upper bound on their DFR at design time, in turn

20 M. Baldi, A. Barenghi, F. Chiaraluce, G. Pelosi, P. Santini

the generation of cryptosystem parameter sets which guarantee a bounded DFR.
This in turn allows to generate cryptosystem parameters achieving IND-CCA2
guarantees, which ensure that active attacks, including reaction attacks, have a
computational cost exceeding the desired security margin, without the need for
ephemeral keys. We note that the proposed bound on the DFR can be fruitfully
integrated in the automated design procedure proposed in this paper.

References

1. LEDAtools. https://github.com/LEDAcrypt/LEDAtools, 2019.
2. M. Baldi, A. Barenghi, F. Chiaraluce, G. Pelosi, and P. Santini. LEDAkem: A post-

quantum key encapsulation mechanism based on QC-LDPC codes. In T. Lange and
R. Steinwandt, editors, Post-Quantum Cryptography, LNCS, pages 3–24. Springer
International Publishing, Cham, 2018.

3. M. Baldi, A. Barenghi, F. Chiaraluce, G. Pelosi, and P. Santini. LEDAcrypt web-
site. https://www.ledacrypt.org/, 2019.

4. M. Baldi, M. Bodrato, and F. Chiaraluce. A new analysis of the McEliece cryp-
tosystem based on QC-LDPC codes. In Security and Cryptography for Networks,
volume 5229 of LNCS, pages 246–262. Springer Verlag, 2008.

5. A. Becker, A. Joux, A. May, and A. Meurer. Decoding random binary linear codes
in 2n/20: How 1 + 1 = 0 improves information set decoding. In D. Pointcheval and
T. Johansson, editors, Advances in Cryptology - EUROCRYPT 2012 - 31st Annual
International Conference on the Theory and Applications of Cryptographic Tech-
niques, Cambridge, UK, April 15-19, 2012. Proceedings, volume 7237 of Lecture
Notes in Computer Science, pages 520–536. Springer, 2012.

6. E. Berlekamp, R. McEliece, and H. van Tilborg. On the inherent intractability of
certain coding problems. IEEE Trans. Inform. Theory, 24(3):384–386, May 1978.

7. D. J. Bernstein. Grover vs. mceliece. In N. Sendrier, editor, Post-Quantum Cryp-
tography, Third International Workshop, PQCrypto 2010, Darmstadt, Germany,
May 25-28, 2010. Proceedings, volume 6061 of Lecture Notes in Computer Science,
pages 73–80. Springer, 2010.

8. S. de Vries. Achieving 128-bit Security against Quantum Attacks in OpenVPN.
Master’s thesis, University of Twente, August 2016.

9. T. Fabšič, V. Hromada, P. Stankovski, P. Zajac, Q. Guo, and T. Johansson. A
reaction attack on the QC-LDPC McEliece cryptosystem. In T. Lange and T. Tak-
agi, editors, Post-Quantum Cryptography: 8th International Workshop, PQCrypto
2017, pages 51–68. Springer, Utrecht, The Netherlands, June 2017.

10. T. Fabsic, V. Hromada, and P. Zajac. A reaction attack on LEDApkc. IACR
Cryptology ePrint Archive, 2018:140, 2018.

11. M. Finiasz and N. Sendrier. Security bounds for the design of code-based cryp-
tosystems. In M. Matsui, editor, Advances in Cryptology - ASIACRYPT 2009,
15th International Conference on the Theory and Application of Cryptology and
Information Security, Tokyo, Japan, December 6-10, 2009. Proceedings, volume
5912 of Lecture Notes in Computer Science, pages 88–105. Springer, 2009.

12. P. Gaborit. Shorter keys for code based cryptography. In Proc. Int. Workshop on
Coding and Cryptography (WCC 2005), pages 81–90, Bergen, Norway, Mar. 2005.

13. R. G. Gallager. Low-Density Parity-Check Codes. M.I.T. Press, 1963.

https://github.com/LEDAcrypt/LEDAtools
https://www.ledacrypt.org/

LEDAcrypt: QC-LDPC code-based cryptosystems with bounded DFR 21

14. M. Grassl, B. Langenberg, M. Roetteler, and R. Steinwandt. Applying Grover’s
Algorithm to AES: Quantum Resource Estimates. In T. Takagi, editor, Post-
Quantum Cryptography - 7th International Workshop, PQCrypto 2016, Fukuoka,
Japan, February 24-26, 2016, Proceedings, volume 9606 of Lecture Notes in Com-
puter Science, pages 29–43. Springer, 2016.

15. L. K. Grover. A fast quantum mechanical algorithm for database search. In
Proc. 28th Annual ACM Symposium on the Theory of Computing, pages 212–219,
Philadephia, PA, May 1996.

16. Q. Guo, T. Johansson, and P. Stankovski. A key recovery attack on MDPC with
CCA security using decoding errors. In J. H. Cheon and T. Takagi, editors, ASI-
ACRYPT 2016, volume 10031 of LNCS, pages 789–815. Springer Berlin Heidelberg,
2016.

17. Q. Guo, T. Johansson, and P. Stankovski Wagner. A key recovery reaction attack
on QC-MDPC. IEEE Trans. Information Theory, 65(3):1845–1861, Mar. 2019.

18. D. Hofheinz, K. Hövelmanns, and E. Kiltz. A modular analysis of the Fujisaki-
Okamoto transformation. In Y. Kalai and L. Reyzin, editors, Theory of Cryptogra-
phy - 15th International Conference, TCC 2017, Baltimore, MD, USA, November
12-15, 2017, Proceedings, Part I, volume 10677 of Lecture Notes in Computer Sci-
ence, pages 341–371. Springer, 2017.

19. H. Jiang, Z. Zhang, L. Chen, H. Wang, and Z. Ma. IND-CCA-secure key encapsula-
tion mechanism in the quantum random oracle model, revisited. In H. Shacham and
A. Boldyreva, editors, Advances in Cryptology - CRYPTO 2018 - 38th Annual In-
ternational Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2018,
Proceedings, Part III, volume 10993 of Lecture Notes in Computer Science, pages
96–125. Springer, 2018.

20. H. Jiang, Z. Zhang, and Z. Ma. Tighter security proofs for generic key encapsulation
mechanism in the quantum random oracle model. Cryptology ePrint Archive,
Report 2019/134, to appear in PQCrypto 2019, 2019. https://eprint.iacr.org/
2019/134.

21. G. Kachigar and J. Tillich. Quantum information set decoding algorithms. In
T. Lange and T. Takagi, editors, Post-Quantum Cryptography - 8th International
Workshop, PQCrypto 2017, Utrecht, The Netherlands, June 26-28, 2017, Proceed-
ings, volume 10346 of Lecture Notes in Computer Science, pages 69–89. Springer,
2017.

22. R. M. Karp. Reducibility Among Combinatorial Problems. In R. E. Miller and
J. W. Thatcher, editors, Proceedings of a symposium on the Complexity of Com-
puter Computations, held March 20-22, 1972, at the IBM Thomas J. Watson Re-
search Center, Yorktown Heights, New York, USA, The IBM Research Symposia
Series, pages 85–103. Plenum Press, New York, 1972.

23. K. Kobara and H. Imai. Semantically secure McEliece public-key cryptosystems
— conversions for McEliece PKC. Lecture Notes in Computer Science, 1992:19–35,
2001.

24. P. J. Lee and E. F. Brickell. An observation on the security of McEliece’s public-
key cryptosystem. In C. G. Günther, editor, Advances in Cryptology - EURO-
CRYPT ’88, Workshop on the Theory and Application of of Cryptographic Tech-
niques, Davos, Switzerland, May 25-27, 1988, Proceedings, volume 330 of Lecture
Notes in Computer Science, pages 275–280. Springer, 1988.

25. J. S. Leon. A probabilistic algorithm for computing minimum weights of large
error-correcting codes. IEEE Trans. Information Theory, 34(5):1354–1359, 1988.

https://eprint.iacr.org/2019/134
https://eprint.iacr.org/2019/134

22 M. Baldi, A. Barenghi, F. Chiaraluce, G. Pelosi, P. Santini

26. A. May, A. Meurer, and E. Thomae. Decoding random linear codes in Õ(20.054n).
In D. H. Lee and X. Wang, editors, Advances in Cryptology - ASIACRYPT 2011 -
17th International Conference on the Theory and Application of Cryptology and In-
formation Security, Seoul, South Korea, December 4-8, 2011. Proceedings, volume
7073 of Lecture Notes in Computer Science, pages 107–124. Springer, 2011.

27. R. J. McEliece. A public-key cryptosystem based on algebraic coding theory. DSN
Progress Report, pages 114–116, 1978.

28. R. Misoczki and P. S. L. M. Barreto. Compact McEliece keys from Goppa codes.
In Selected Areas in Cryptography, volume 5867 of LNCS, pages 376–392. Springer,
2009.

29. R. Misoczki, J. P. Tillich, N. Sendrier, and P. S. L. M. Barreto. MDPC-McEliece:
New McEliece variants from moderate density parity-check codes. In Proc. IEEE
International Symposium on Information Theory (ISIT 2000), pages 2069–2073,
July 2013.

30. C. Monico, J. Rosenthal, and A. Shokrollahi. Using low density parity check codes
in the McEliece cryptosystem. In Proc. IEEE International Symposium on Infor-
mation Theory (ISIT 2000), page 215, Sorrento, Italy, June 2000.

31. National Institute of Standards and Technology. Post-quantum crypto project,
Dec. 2016.

32. H. Niederreiter. Knapsack-type cryptosystems and algebraic coding theory. Probl.
Contr. and Inf. Theory, 15:159–166, 1986.

33. A. Nilsson, T. Johansson, and P. Stankovski Wagner. Error amplification in code-
based cryptography. IACR Transactions on Cryptographic Hardware and Embedded
Systems, 2019(1):238–258, nov 2018.

34. E. Prange. The use of information sets in decoding cyclic codes. IRE Trans.
Information Theory, 8(5):5–9, 1962.

35. N. Sendrier. Decoding one out of many. In B. Yang, editor, Post-Quantum Cryp-
tography - 4th International Workshop, PQCrypto 2011, Taipei, Taiwan, November
29 - December 2, 2011. Proceedings, volume 7071 of Lecture Notes in Computer
Science, pages 51–67. Springer, 2011.

36. J. Stern. A method for finding codewords of small weight. In G. D. Cohen and
J. Wolfmann, editors, Coding Theory and Applications, 3rd International Collo-
quium, Toulon, France, November 2-4, 1988, Proceedings, volume 388 of Lecture
Notes in Computer Science, pages 106–113. Springer, 1988.

37. J. Tillich. The decoding failure probability of MDPC codes. In 2018 IEEE In-
ternational Symposium on Information Theory, ISIT 2018, Vail, CO, USA, June
17-22, 2018, pages 941–945, 2018.

38. R. Ueno, S. Morioka, N. Homma, and T. Aoki. A High Throughput/Gate
AES Hardware Architecture by Compressing Encryption and Decryption Data-
paths - Toward Efficient CBC-Mode Implementation. In B. Gierlichs and A. Y.
Poschmann, editors, Cryptographic Hardware and Embedded Systems - CHES 2016
- 18th International Conference, Santa Barbara, CA, USA, August 17-19, 2016,
Proceedings, volume 9813 of Lecture Notes in Computer Science, pages 538–558.
Springer, 2016.

A Bounded DFR for Q-decoders

Binary block error correction codes C(n, k, t) with a low density r × n parity
check matrix H ′ allow iterative decoding strategies which aim at solving at fix

LEDAcrypt: QC-LDPC code-based cryptosystems with bounded DFR 23

point the simultaneous binary equation system given by s = H ′eT , where s ∈ Zr2
is a 1 × r binary vector named syndrome, e ∈ Zn2 is a 1 × n binary vector with
a given number t � n of non-zero entries named error vector, representing the
unknown sequence of values to be found, while H ′ is assumed to have dv � n
non-zero entries per column. Therefore, the purpose of an iterative decoding
procedure is to compute the values of the elements of e given H ′ and s.

A common approach to perform iterative decoding is the Bit Flipping (BF)
strategy firstly described in [13]. Such an approach considers the i-th row of H ′,
with i ∈ {0, . . . , r− 1}, as a representation of the coefficients of the parity check
equation involving the unknown ej , with j ∈ {0, . . . , n− 1}, having as constant
term the i-th element of the syndrome s. Each coefficient is associated to a
binary variable ej ∈ Z2, i.e., a binary element of the error vector e whose value
should be determined. Initially, the guessed value of the error vector, denoted in
the following as ê, is assumed to be the null vector, i.e., ê = 01×n (i.e., the bits
of the received message are initially assumed to be all uncorrupted).

The iterative BF decoding procedure repeats (at least one time) the execution
of two phases (named in the following as Count of the unsatisfied parity checks,
and Bit-flipping, respectively) until either all the values of the syndrome become
null (pointing out the fact that every value of e has been found) or an imposed
a-priori maximum number of iterations, lmax ≥ 1, is reached.

1. Count of the unsatisfied parity checks. The first phase of the decoding pro-
cedure analyzes the parity check equations where a given error variable êj
is involved, with j ∈ {0, . . . , n − 1}, i.e., the number of rows of H ′ where
the j-th element is non-zero, and counts how many of them are unsatisfied.
In other words, it counts how many equations involving the unknown ej
have a constant term in the syndrome which is non-zero. Such a count of
the number of unsatisfied parity check equations, upcj , can be computed
for each error variable êj , lifting the elements of s and H ′ from Z2 to Z
and performing a product between an integer vector (ς ← Lift(s)) by an
integer matrix (H′ ← Lift(H ′)), obtaining a 1 × n integer vector upc(BF),
i.e., upc(BF) ← ς H′.

2. Bit-flipping. The second phase changes (i.e., flips, hence the name bit-flipping)
each value of an error variable êj for which upc

(BF)
j exceeds a given threshold

b ≥ 1. Subsequently, it updates the value of the syndrome, computing it as
H ′êT , employing the new value of the êj variables in the process.

The LEDA cryptosystems leverage Q-decoders that achieve smaller complexity
than classical BF decoders. In fact, due to the sparsity of both H and Q, their
product HQ has a number of non-zero row elements ≤ dcm, with the equality
holding with very high probability. Such a fact can be exploited to perform the
first phase of the bit-flipping decoding procedure in a more efficient way. To
do so, the Q-decoder proceeds to lift H and Q in the integer domain obtaining
H ← Lift(H) and Q ← Lift(Q), respectively. Subsequently, it performs a
decoding strategy similar to the one described above, as follows.

24 M. Baldi, A. Barenghi, F. Chiaraluce, G. Pelosi, P. Santini

1. Count of the unsatisfied parity checks. The first phase is performed in two
steps. First of all, a temporary 1×n vector of integers upc(temp) is computed
in the same fashion as in the BF decoder, employing the lifted syndrome,
ς ← Lift(s), and H instead of H′, i.e., upc(temp) ← ς H. The value of the
actual 1 × n integer vector upc(Q−dec) storing the unsatisfied parity-check
counts is then computed as: upc(Q−dec) ← upc(temp) Q.

2. Bit-flipping. The second phase of the Q-decoder follows the same steps of
the BF one, flipping the values of the guessed error vector êj , j ∈ {0, . . . , n−
1}, for which the j-th unsatisfied parity-check count upc(Q−dec)j exceeds the
chosen threshold b. Subsequently, the value of the syndrome s is updated as
s+HQêT .

In both the BF- and Q-decoder, the update to the syndrome value caused by the
flipping of the values of ê in the second phase of the procedure, can be computed
incrementally, adding only the contributions due to the value change of ê (see
the LEDA cryptosystems specification [3]).

If a null s is obtained before the maximum allowed number of iterations lmax

is exceeded, then the Q-decoder terminates with success its decoding procedure,
otherwise it ends with a decoding failure.

Lemma 1 (Equivalence of the bit-flipping decoder and Q-decoder).
Let H and Q be the two matrices composing the parity-check matrix H ′ = HQ,
and denote as H′ ← Lift(H ′), H ← Lift(H), Q ← Lift(Q), the matrices
obtained through lifting their values from Z2 to Z. Assume a BF procedure acting
on H ′ and a Q-decoding procedure acting on H and Q, both taking as input
the same syndrome value s, providing as output an updated syndrome and a
guessed error vector ê (which is initialized as ê = 01×n at the beginning of the
computations), and employing the same bit-flipping thresholds. If H′ = HQ, the
BF and Q-decoding procedures compute as output the same values for s and ê.

Proof. The functional equivalence can be proven showing that the update to
the two state vectors, the syndrome s and the current ê performed by the bit-
flipping decoder and the Q-decoder leads to the same values at the end of each
iteration of the decoding algorithms. We start by observing that the second
phase of the BF and Q-decoder procedure will lead to the same state update
of s and ê if the values of the upc(BF) vector for the BF procedure and the
upc(Q−dec) vector for the Q-decoder coincide. Indeed, since the update only de-
pends on the values of the unsatisfied parity-checks and the flipping threshold
b, if upc(BF) = upc(Q−dec) the update on ê and s will match. We consider, from
now on, the parity-check computation procedures as described before through
matrix multiplications over the integer domain, and prove that, during the first
phase, the BF decoder and the Q-decoder yield values of upc(BF) and upc(Q−dec)

such that upc(BF) = upc(Q−dec) under the hypothesis that the starting val-
ues for s and ê match. Considering the computation of upc(BF), and denoting
with h′ij the element of H ′ at row i, column j, we have that upc(BF) = ςH′,

LEDAcrypt: QC-LDPC code-based cryptosystems with bounded DFR 25

hence upc
(BF)
j =

r−1∑
z=0

h′zj sz. The computation of upc(Q−dec) proceeds as follows

upc(Q−dec) = (ςH)Q =

n−1∑
i=0

(
r−1∑
z=0

sz hzi

)
qij =

r−1∑
z=0

(
n−1∑
i=0

hzi qij

)
sz.

Recalling the hypothesisH′ = HQ, it is possible to acknowledge that
n−1∑
i=0

hzi qij =

h′zj , which, in turn, implies that upc(Q−dec) = upc(BF). ut

Lemma 2 (Computational advantage of the Q-decoder). Let us consider
a bit-flipping decoding procedure and a Q-decoder procedure both acting on the
same parity matrix H ′ = HQ. The number of non-zero entries of a column of H
is dv � n, the number of non-zero entries of a column of Q is m� n, and the
number of non-zero entries of a column of H ′ is dvm (assuming no cancellations
occur in the multiplication HQ). The computational complexity of an iteration of
the bit-flipping decoder equals O(dvmn+n), while the computational complexity
of an iteration of the Q-decoder procedure is O((dv +m)n+ n).

Proof. (Sketch) The proof can be obtained in a straightforward fashion with a
counting argument on the number of operations performed during the iteration
of the decoding procedures, assuming a sparse representation of H, H ′ and Q.
In particular the amount of operations performed during the unsatisfied parity-
check count estimation phase amounts to O(dvmn) additions for the bit-flipping
decoder and to O((dv + m)n) for the Q-decoder, while both algorithms will
perform the same amount of bit flips O(n + r) = O(n) in the bit-flipping and
syndrome update computations. ut

Whenever, if H′ 6= HQ, it is not possible to state the equivalence of the two
procedures. However, some qualitative considerations about their behavior can
be drawn analyzing the product HQ in the aforementioned case. Indeed, an
entry in the i-th row, j-th column of H′ is different from the one with the
same coordinates in HQ whenever the scalar product i-th row of H and the
j-th column of Q is ≥ 2. First of all, we note that such an event occurs with

probability
∑min{m,dc}
i=2

(mi)(
n−m
dc−i)

(ndc)
, which becomes significantly small if the code

parameters (n,dc,m) take values of practical interest. Since the number of entries
which have a different value in HQ with respect to H′ are expected to be small,
the values of the unsatisfied parity check counts upc(BF) and upc(Q−dec) are also
expected to differ by a quite small amount, while the computational complexity
of the decoding algorithms will remain substantially unchanged with respect to
the case in which H′ = HQ, as the term dvm in the BF decoder is reduced by
a significantly small term, while the one of the Q-decoder is unchanged.

The decoding failure rate of the Q-decoder is crucially dependent on the
choice made for the bit-flipping threshold b. Indeed, the designer aims at picking
a value of b satisfying the following criteria.

26 M. Baldi, A. Barenghi, F. Chiaraluce, G. Pelosi, P. Santini

(i) The number of values of the unsatisfied parity-check count upcj , with j ∈
{0, . . . , n− 1} such that êj 6= ej and upcj ≥ b should be maximum. Indeed,
when this situation occurs, all such values upcj are rightfully flipped.

(ii) The number of values of the unsatisfied parity-check count upcj , with j ∈
{0, . . . , n− 1} such that êj = ej and upcj < b should be maximum. Indeed,
when this situation occurs, all such values upcj are rightfully not flipped.

Observing that during the decoding procedure the j-th bit value of the guessed
error vector ê is flipped when upcj is higher than or equal to b, an ideal case
where it is possible to attain a null DFR is the one in which, whenever the
maximum possible value of any unsatisfied parity-check count upcj related to a
variable êj = ej (i.e., no flip is needed) is lower than the minimum possible value
of upck related to any variable êk 6= ek (i.e., flip is needed). Indeed, in this case,
setting the threshold to any value b such that max_upcno flip < b ≤ min_upcflip
allows the Q-decoder to compute the value of the actual error vector e in a single
iteration.

To provide code parameter design criteria to attain a zero DFR in a single
iteration with the Q-decoder, we now analyze the contribution to the values
of upc provided by the bits of the actual error vector. Let uz ∈ Zn2 , with z ∈
{0, . . . , n − 1}, denote 1 × n binary vector such that only the z-th component
of uz is non-zero (i.e., it has unitary Hamming weight, wt(uz) = 1). We now
consider the actual error vector e as the sum of t ≥ 1 vectors ∈ U(e) = {uz ∈
Zn2 , wt(uz) = 1, z ∈ I(e)}, where I(e) ⊂ {0, . . . , n − 1} defines the support of e
and |I(e)| = t (thus it also holds |U(e)| = t), and quantify the contributions of
each bit in e to the value of upcz computed by the Q-decoder in its first iteration,
proceeding backwards from each uz ∈ U(e) composing e.

We describe the mentioned quantification with the aid of a running example
referred to the syndrome Q-decoding procedure of a toy code C(5, 3, 2), assuming
that a single bit in the actual error vector is asserted, i.e., e = u2. Figure 2 reports
a graphical description of the mentioned running example. Our aim is to define
a dvm×n matrix P(z) containing a set of parity-check equations, i.e., rows of H
which contribute to upcz, z ∈ {0, . . . , n− 1}6.

Consider the syndrome value s =
(
H(QeT)

)T obtained as the multiplica-
tion between the matrix Q and the actual error vector value e = uz, with
z ∈ {0, . . . , n − 1}, (i.e., QeT = QuTz), followed by the multiplication between
the matrix H and the expanded error vector e(z) = QeT , with wt(e(z)) = m,

which has been computed in the previous step (i.e., s = H
((

e(z)
)T)T

. Note

that, in this case e(z) is the result of a computation depending only on the value
of Q and z, not on the actual error vector being decoded.

Consider e(z) as the sum of m binary vectors uj , j ∈ {0, . . . , n − 1} with a
single non-zero entry in the j-th position (see e(2) = u2 +u4, with u2 highlighted
6 Note that the notation P(z) denotes a matrix whose values are related with the bit
in position z of the actual (unknown) error vector (it may include repeated rows).
The round brackets employed in the subscript are meant to disambiguate this object
from the notations related to the z-th row of a generic matrix P , i.e., Pz.

LEDAcrypt: QC-LDPC code-based cryptosystems with bounded DFR 27

0
0
1
0
1

eT

1 0 0 1 1
0 1 0 0 0
0 0 1 0 0
0 1 0 1 0
1 0 1 0 1

Q

0
0
1
0
0

eT

=

(a)

0 1 1

s

=
1 0 1 1 1
0 1 0 0 1
1 1 1 1 0

H

0
0
1
0
1

eT

(b)

Fig. 2. Steps of the syndrome computation process of a toy code C(5, 3, 2), having H
with constant column weight dv = 2 and Q with constant column weight m = 2. The
single bit error vector employed is e = u2 = (0, 0, 1, 0, 0). In (a) the error vector is
expanded as e = u2 + u4 = (0, 0, 1, 0, 1) after the multiplication by Q, e = (QeT)T . In
(b) the effect on the syndrome of multiplying e by H is shown, i.e., s =

(
H(QeT)

)T .
in red and u4 in blue in Fig. 2). Each uj in e(z) is involved in all the parity-check
equations of H, i.e., the 1×n rows, Hi, with i ∈ {0, . . . , r−1}, having their j-th
element set to 1. It is thus possible to build a dvm× n matrix P(z) juxtaposing
all the parity equations in H such that their j-th element is set to 1, for all
the uj composing e(z). The P(z) matrix allows to compute the contribution to
the value upcz, z ∈ {0, . . . , n − 1} provided by any expanded error vector e(j),
j ∈ {0, . . . , n− 1}, as it is constituted by all and only the parity check equations
which will have their non null results counted to obtain upcz. Therefore, for any
binary variable ez, z ∈ {0, . . . , n−1}, in the actual error vector e, it is possible to
express the value of the corresponding unsatisfied parity-check count evaluated
by the decoding procedure as upcz ← wt

(
P(z)

(
e(z)

)T)
.

The construction of P(z) for the toy example is reported in Fig. 3, where
z = 2. P(z) is obtained by juxtaposing the rows H0 and H2, as they both involve
u2, and juxtaposing to them the rows H0 and H1 as they both involve u4.

Figure 3 provides a visual comparison of the two equivalent processes to
compute the value of upc2 considering the values of ς,H and Q obtained as the
integer lifts of s,H and Q from Fig. 2. Indeed, computing the value of upc2 as
the third component of the vector ςHQ yields the same results as computing the
binary vector P(2)(e

(2))T and computing its weight.
Relying on the P(z) matrices to express the contribution of a given expanded

error vector e(z), we are able to rewrite the computation of upcz for a generic
error vector with t asserted bits, i.e., e =

∑
uz∈U(e)

uz, where I(e) ⊂ {0, . . . , n− 1}

with |I(e)| = t, and U(e) = {ui, wt(ui) = 1, i ∈ I(e)}, as follows

upcz ← wt

 ∑
i∈I(e)⊂{0,...,n−1}

P(z)

(
e(i)
)T = wt

 ∑
uz∈U(e)

P(z)(Qu
T
z)

 .

28 M. Baldi, A. Barenghi, F. Chiaraluce, G. Pelosi, P. Santini

0 1 1

ς

1 0 1 1 1
0 1 0 0 1
1 1 1 1 0

H

0 2 1 1 1

upc(temp)

1 0 0 1 1
0 1 0 0 0
0 0 1 0 0
0 1 0 1 0
1 0 1 0 1

Q

2

upc2

1 0 1 1 1
1 1 1 1 0
1 0 1 1 1
0 1 0 0 1

P(2)

0
0
1
0
1

(e(2))T

=

0
1
0
1

P(2)(e
(2))T

2

wt(P(2)(e
(2))T)

Fig. 3. Representation of the P(z) matrix for the running example (z = 2), and
computation of the upcz value both via Q and H, and employing P(z)

A.1 Q-decoders with zero DFR

Having provided a way to derive the contribution of any bit of an actual error
vector to a specific unsatisfied parity-check count upcz, following the work in [37]
for the BF-decoder, we now proceed to analyze the case of a Q-decoder which is
always able to correct all the errors in a single iteration of the decoding proce-
dure. To do so, the bit-flipping action should flip the value of all the elements of
the guessed error ê which do not match e. Recalling that ê is initialized to the
null vector, the first iteration of the Q-decoder should thus flip all the elements
êz such that ez = 1.

The Q-decoder will perform all and only the appropriate flips if the upcz
with z ∈ {0, . . . , n − 1} such that ez = 1, match or exceed the threshold b, and
all the upcz such that ez = 0 are below the same flipping threshold.
We have that, if the highest value of upcz when ez = 0 (i.e., max_upcno flip)
is smaller than the lowest value of upcz when ez = 1 (i.e., min_upcflip), the
Q-decoder will be able to correct all the errors in a single iteration if the bit-
flipping threshold b is set to b = min_upcflip, as this will cause the flipping of
all and only the incorrectly estimated bits in the guessed error vector ê.

In the following, we derive an upper bound on the maximum admissible
number of errors t which guarantees that max_upcno flip < min_upcflip for a
given code.

Theorem 1. Let H be an r×n parity-check matrix, with constant column weight
equal to dv, and let Q be an n×n matrix with constant row weight equal to m. Let
e be a 1× n binary error vector with weight t, composed as e =

∑
i∈I(e) ui, with

I(e) ⊂ {0, . . . , n − 1} defining the support of e, |I(e)| = t, where ui ∈ Zn2 , and

LEDAcrypt: QC-LDPC code-based cryptosystems with bounded DFR 29

wt(ui) = 1; and let e be the 1× n binary vector computed as e =
(
QeT

)T . The
first iteration of the Q-decoder, taking as input the 1× r syndrome s = (HeT)T ,
retrieves the values of all the bits of actual error vector e if t < α+β

γ+β , where
α = minz∈I(e)

{
wt
(
P(z)

(
e(z)

)T)}
,

β = max z,i∈I(e),z 6=i

{
wt
(
P(z)

(
e(z)

)T ∧ P(z)

(
e(i)
)T)}

,

γ = max z,i∈I(e),z 6=i

{
wt
(
P(z)

(
e(i)
)T)}

,

(1)

where ∧ indicates the component-wise binary product (i.e., the Boolean and).

Proof. We first determine the lower bound min_upcflip as the lowest value of
an unsatisfied parity-check count upcz, z ∈ {0, . . . , n− 1}, when the value of the
corresponding bit in the actual error vector is set, i.e., ez = 1.
We start by decomposing the value of upcz into the contributions provided by the
t vectors ui ∈ Zn2 , with i ∈ {0, . . . , n − 1} and wt(ui) = 1, i.e., e =

∑
i∈I(e) ui,

I(e) ⊂ {0, . . . , n − 1}, |I(e)| = t (thus, z ∈ I(e)). In other words, we want to
quantify the minimum value for the count of the unsatisfied parity checks related
to a bit of the guessed error vector that needs to be flipped when it is right to
do so. We then have

upcz = wt
(
P(z) e

T
)

= wt

P(z)

(
e(z)

)T
⊕

⊕
e(i)=(QuTi)

T

ui∈U(e)\{uz}

P(z)

(
e(i)
)T
 .

Considering that, for a generic pair of binary vectors a, b of length n we have
that wt(a⊕ b) = wt(a) + wt(b)− 2wt(a ∧ b), we expand the former onto

upcz = wt

(
P(z)

(
e(z)

)T)
+ wt

 ⊕
e(i)=(QuTi)

T

ui∈U(e)\{uz}

P(z)

(
e(i)
)T
+

− 2 wt

P(z)

(
e(z)

)T∧ ⊕
e(i)=(QuTi)

T

ui∈U(e)\{uz}

P(z)

(
e(i)
)T
 .

Recalling that, for two binary vectors a, b it holds that wt(b) ≥ wt(a ∧ b), it is
worth noting that it also holds that wt(a)+wt(b)−2wt(a∧b) ≥ wt(a)−wt(a∧b).
Therefore, considering the second and third addend of the above equality on

30 M. Baldi, A. Barenghi, F. Chiaraluce, G. Pelosi, P. Santini

upcz, we obtain

upcz ≥ wt
(
P(z)

(
e(z)

)T)
− wt

P(z)

(
e(z)

)T∧ ⊕
e(i)=(QuTi)

T

ui∈U(e)\{uz}

P(z)

(
e(i)
)T
 .

Since we are interested in quantifying the lower bound min_upcflip for upcz, a
straightforward rewriting of the previous inequality is as follows

upcz ≥ min
z∈I(e)

{
wt

(
P(z)

(
e(z)

)T)}
+

− max
z,i∈I(e)
z 6=i

wt
P(z)

(
e(z)

)T∧ ⊕
e(i)=(QuTi)

T

ui∈U(e)\{uz}

P(z)

(
e(i)
)T

 .

Considering the second addend, a coarser upper bound to the argument of the
max{...} operator can be derived observing that, given three binary vectors
a, b, c, wt (c ∧ (a⊕ b)) ≤ wt (c ∧ (a ∨ b)) = wt ((c ∧ a) ∨ (c ∧ b)), where ∨ denotes
the binary or. Thus, the second addend in the previous inequality can be replaced
by the following quantity

max
z,i∈I(e)
z 6=i

wt
 ∨

(e(i))=(QuTi)
T

ui∈U(e)\{uz}

(
P(z)

(
e(z)

)T∧
P(z)

(
e(i)
)T)

which can be further upper bounded (noting that |U(e) \ {uz}| = t− 1) as

(t− 1) max
z,i∈I(e)
z 6=i

{
wt

(
P(z)

(
e(z)

)T∧
P(z)

(
e(i)
)T)}

Looking at the original equality set to compute the value of upcz, it holds that

upcz ≥ min
z∈I(e)

{
wt

(
P(z)

(
e(z)

)T)}
+

− (t− 1) max
z,i∈I(e)
z 6=i

{
wt

(
P(z)

(
e(z)

)T∧
P(z)

(
e(i)
)T)}

Therefore, it is easy to acknowledge that

min_upcflip ≥ α− (t− 1)β.

In the following we determine max_upcno flip as the highest value of an un-
satisfied parity-check count upcz, z ∈ {0, . . . , n − 1}, when the value of the
corresponding bit in the actual error vector is unset, i.e. ez = 0.

LEDAcrypt: QC-LDPC code-based cryptosystems with bounded DFR 31

In this case we aim at computing an upper bound for upcz, considering that
that uz /∈ U(e) (and thus z 6∈ I(e)); we have

upcz = wt

 ⊕
e(i)=(QuTi)

T

ui∈U(e)

P(z)

(
e(i)
)T
 ≤ t max

z,i∈I(e)

{
wt

(
P(z)

(
e(i)
)T)}

= tγ

We can therefore employ tγ as an upper bound for the value of max_upcno flip .
Recalling that the Q-decoder procedure will retrieve all the values of the

error vector e in a single iteration if max_upcno flip < min_upcflip and the
bit-flipping threshold b is such that b = min_upcflip, it is easy to acknowledge
that the maximum number of errors tolerable by the code is constrained by the
following inequality

tγ < α− (t− 1)β ⇒ t <
α+ β

γ + β
. (2)

ut

A.2 Probabilistic Analysis of the First Iteration of the Q-Decoder

In the following, we model the number of differences between the guessed error
vector ê, provided as output of the first iteration of the Q-decoder, and the
actual error vector e, as a random variable T over the discrete domain of integers
{0, . . . , t}, t ≥ 0 having a probability mass function Pr [T = τ], τ = wt (ê∗ ⊕ e)
depending on the decoding strategy and the LDPC code parameters.

To quantify the said probability, we consider the decoding procedure em-
ployed by the LEDAcrypt systems assuming that the hypothesis of Lemma 1
holds. Given the equivalence of the BF decoder and Q-decoder provided by this
Lemma, for the sake of simplicity, we will reason on the application of one itera-
tion of the BF decoder taking as input the r × n parity-check matrix H ′ = HQ
(assumed to be computed as a cancellation-free product between H and Q),
the 1 × n syndrome s = (H ′ êT)T , and a null guessed error vector ê = 01×n.
The code is assumed to be an LDPC code as in the LEDA cryptosystems, with
r = (n0 − 1)p, n = n0p, p a prime number, n0 ∈ {2, 3, 4}, while m denotes the
number of non-zero entries in each row/column of the n×n matrix Q, and dv n0
denotes the number of non-zero entries in each row/column of the r × n matrix
H. As a consequence, each row/column of the parity-check matrix H ′ exhibits
d′c = dv n0m non-zero entries. This implies that each parity-check equation (i.e.,
row) of H ′ involves d′c variables of the guessed error vector ê.

The quantification of the probability to observe a certain number differences
between the guessed error vector, provided as output of the first iteration of the
decoder, and the actual error vector can be evaluated considering the number
of correctly and wrongly flipped bits after the first iteration of the decoding

32 M. Baldi, A. Barenghi, F. Chiaraluce, G. Pelosi, P. Santini

algorithm. In turn, each of these numbers, can be quantified reasoning on the
following joint probabilities: pcorrect−unsatisfied and pincorrect−unsatisfied.

The joint probability pcorrect−unsatisfied = Pr [êj = ej = 0; hij = 1, si = 1]
can be stated as the likelihood of occurrence of the following events:

– {êj = ej = 0} refers to the event describing the j-th bit of the guessed error
vector that does not need to be flipped;

– {hij = 1, si = 1} refers to the event describing the i-th parity-check equation
(i.e., H ′i) that is unsatisfied (i.e., si = 1) when the j-th variable in ê (i.e.,
êj) is included in it.

It is easy to acknowledge that the above events occur if an odd number of the
t asserted bits in the unknown error vector are involved in d′c − 1 parity-check
equations, thus

pcorrect−unsatisfied =

min[d′c−1,t]∑
j = 1, j odd

(
d′c−1
j

)(
n−d′c
t−j

)(
n−1
t

) .

An analogous line of reasoning allows to quantify also the joint probability
pincorrect−unsatisfied = Pr [êi 6= ei; hij = 1, si = 1], which can be stated as the
likelihood of occurrence of the following events:

– {êj 6= ej} refers to the event describing the j-th bit of the guessed error
vector that need to be flipped;

– {hij = 1, si = 1} refers to the event describing the i-th parity-check equation
(i.e., H ′i) that is unsatisfied (i.e., si = 1) when the j-th variable in ê (i.e.,
êj) is included in it. So

pincorrect−unsatisfied =

min[d′c−1,t−1]∑
j = 0, j even

(
d′c−1
j

)(
n−d′c
t−j−1

)(
n−1
t−1
) .

The probability pcorrect that the upc based estimation deems rightfully a given
êj 6= ej in need of flipping can be quantified as the probability that upc ≥ b, i.e.,

pcorrect =

d′v∑
j=b

(
d′v
j

)
pincorrect−unsatisfied

j (1− pincorrect−unsatisfied)
d′v−j .

Analogously, we define the probability pinduce as the probability that the upc

based estimation deems a given êj = ej as (wrongly) in need of flipping as

pinduce =

d′v∑
j=b

(
d′v
j

)
pcorrect−unsatisfied

j (1− pcorrect−unsatisfied)
d′v−j .

Note that pcorrect is indeed the probability that the Q-decoder performs a correct
flip at the first iteration, while pinduce is the one of performing a wrong flip.

LEDAcrypt: QC-LDPC code-based cryptosystems with bounded DFR 33

Thus, the probabilities of the Q-decoder performing c ∈ {0, . . . , t} correct
flips out of t or w ∈ {0, . . . , t} wrong flips out of t can be quantified introducing
the random variables fcorrect and fwrong, as follows

Pr [fcorrect = c] =

(
t

c

)
pcorrect

c (1− pcorrect)
t−c

,

P r
[
fwrong = w

]
=

(
n− t
w

)
pinduce

w (1− pinduce)
n−t−w

.

Assuming that the decision on whether a given value êj in ê should be flipped
or not are taken independently, i.e.,

Pr
[
fcorrect = c, fwrong = w

]
= Pr [fcorrect = c] · Pr

[
fwrong = w

]
,

we obtain the probability that the guessed error vector ê, at the end of the
computation of the first iteration of the Q-decoder, differs from the actual error
vector in τ ∈ {0, . . . , t} positions as follows

Pr [T = τ] =

t∑
i=t−τ

Pr [fcorrect = i] · Pr
[
fwrong = τ + i− t

]
.

This result permits us to estimate the probability of having a given number of
errors τ ∈ {0, . . . , t} left to be corrected after the first iteration of the Q-decoder,
since in this case the hypothesis on the independence of the decisions to flip or
not to flip a given variable can be assumed safely.

	LEDAcrypt: QC-LDPC code-based cryptosystems with bounded decryption failure rate

