141 research outputs found

    The role of cognitive emotion regulation on the vicarious emotional response

    Get PDF
    Perceiving another in need may provoke two possible emotional responses: empathic concern and personal distress. This research aims to test whether different emotion regulation strategies (i.e., reappraisal and rumination) may lead to different vicarious emotional responses (i.e., empathic concern and personal distress). In this sense, we hypothesized that reappraisal may lead to a greater feeling of empathic concern, whereas rumination may lead to a higher feeling of personal distress. To test the hypotheses we used experimental instructions (Study 1) and a priming procedure (Study 2) to manipulate the emotion regulation strategies. The results supported our hypotheses. Furthermore in the rumination condition the emotional experience was described as being more negative and more highly arousing than in the reappraisal condition. We discuss the effect of these two forms of cognitive emotion regulation on empathic concern and personal distress

    Bats in the anthropogenic matrix: Challenges and opportunities for the conservation of chiroptera and their ecosystem services in agricultural landscapes

    Get PDF
    Intensification in land-use and farming practices has had largely negative effects on bats, leading to population declines and concomitant losses of ecosystem services. Current trends in land-use change suggest that agricultural areas will further expand, while production systems may either experience further intensification (particularly in developing nations) or become more environmentally friendly (especially in Europe). In this chapter, we review the existing literature on how agricultural management affects the bat assemblages and the behavior of individual bat species, as well as the literature on provision of ecosystem services by bats (pest insect suppression and pollination) in agricultural systems. Bats show highly variable responses to habitat conversion, with no significant change in species richness or measures of activity or abundance. In contrast, intensification within agricultural systems (i.e., increased agrochemical inputs, reduction of natural structuring elements such as hedges, woods, and marshes) had more consistently negative effects on abundance and species richness. Agroforestry systems appear to mitigate negative consequences of habitat conversion and intensification, often having higher abundances and activity levels than natural areas. Across biomes, bats play key roles in limiting populations of arthropods by consuming various agricultural pests. In tropical areas, bats are key pollinators of several commercial fruit species. However, these substantial benefits may go unrecognized by farmers, who sometimes associate bats with ecosystem disservices such as crop raiding. Given the importance of bats for global food production, future agricultural management should focus on “wildlife-friendly” farming practices that allow more bats to exploit and persist in the anthropogenic matrix so as to enhance provision of ecosystem services. Pressing research topics include (1) a better understanding of how local-level versus landscape-level management practices interact to structure bat assemblages, (2) the effects of new pesticide classes and GM crops on bat populations, and (3) how increased documentation and valuation of the ecosystem services provided by bats could improve attitudes of producers toward their conservation

    Biased-corrected richness estimates for the Amazonian tree flora

    Get PDF
    Amazonian forests are extraordinarily diverse, but the estimated species richness is very much debated. Here, we apply an ensemble of parametric estimators and a novel technique that includes conspecific spatial aggregation to an extended database of forest plots with up-to-date taxonomy. We show that the species abundance distribution of Amazonia is best approximated by a logseries with aggregated individuals, where aggregation increases with rarity. By averaging several methods to estimate total richness, we confirm that over 15,000 tree species are expected to occur in Amazonia. We also show that using ten times the number of plots would result in an increase to just ~50% of those 15,000 estimated species. To get a more complete sample of all tree species, rigorous field campaigns may be needed but the number of trees in Amazonia will remain an estimate for years to come

    Consistent patterns of common species across tropical tree communities

    Get PDF
    Trees structure the Earth’s most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge. Here we investigate abundance patterns of common tree species using inventory data on 1,003,805 trees with trunk diameters of at least 10 cm across 1,568 locations1,2,3,4,5,6 in closed-canopy, structurally intact old-growth tropical forests in Africa, Amazonia and Southeast Asia. We estimate that 2.2%, 2.2% and 2.3% of species comprise 50% of the tropical trees in these regions, respectively. Extrapolating across all closed-canopy tropical forests, we estimate that just 1,053 species comprise half of Earth’s 800 billion tropical trees with trunk diameters of at least 10 cm. Despite differing biogeographic, climatic and anthropogenic histories7, we find notably consistent patterns of common species and species abundance distributions across the continents. This suggests that fundamental mechanisms of tree community assembly may apply to all tropical forests. Resampling analyses show that the most common species are likely to belong to a manageable list of known species, enabling targeted efforts to understand their ecology. Although they do not detract from the importance of rare species, our results open new opportunities to understand the world’s most diverse forests, including modelling their response to environmental change, by focusing on the common species that constitute the majority of their trees.Publisher PDFPeer reviewe

    Searching for VHE gamma-ray emission associated with IceCube neutrino alerts using FACT, H.E.S.S., MAGIC, and VERITAS

    Get PDF
    The realtime follow-up of neutrino events is a promising approach to searchfor astrophysical neutrino sources. It has so far provided compelling evidencefor a neutrino point source: the flaring gamma-ray blazar TXS 0506+056 observedin coincidence with the high-energy neutrino IceCube-170922A detected byIceCube. The detection of very-high-energy gamma rays (VHE, E>100GeV\mathrm{E} >100\,\mathrm{GeV}) from this source helped establish the coincidence andconstrained the modeling of the blazar emission at the time of the IceCubeevent. The four major imaging atmospheric Cherenkov telescope arrays (IACTs) -FACT, H.E.S.S., MAGIC, and VERITAS - operate an active follow-up program oftarget-of-opportunity observations of neutrino alerts sent by IceCube. Thisprogram has two main components. One are the observations of known gamma-raysources around which a cluster of candidate neutrino events has been identifiedby IceCube (Gamma-ray Follow-Up, GFU). Second one is the follow-up of singlehigh-energy neutrino candidate events of potential astrophysical origin such asIceCube-170922A. GFU has been recently upgraded by IceCube in collaborationwith the IACT groups. We present here recent results from the IACT follow-upprograms of IceCube neutrino alerts and a description of the upgraded IceCubeGFU system.<br

    Multimessenger NuEM Alerts with AMON

    Get PDF
    The Astrophysical Multimessenger Observatory Network (AMON), has developed a real-time multi-messenger alert system. The system performs coincidence analyses of datasets from gamma-ray and neutrino detectors, making the Neutrino-Electromagnetic (NuEM) alert channel. For these analyses, AMON takes advantage of sub-threshold events, i.e., events that by themselves are not significant in the individual detectors. The main purpose of this channel is to search for gamma-ray counterparts of neutrino events. We will describe the different analyses that make-up this channel and present a selection of recent results

    The IceCube Neutrino Observatory, the Pierre Auger Observatory and the Telescope Array: Joint Contribution to the 34th International Cosmic Ray Conference (ICRC 2015)

    Full text link
    We have conducted three searches for correlations between ultra-high energy cosmic rays detected by the Telescope Array and the Pierre Auger Observatory, and high-energy neutrino candidate events from IceCube. Two cross-correlation analyses with UHECRs are done: one with 39 cascades from the IceCube `high-energy starting events' sample and the other with 16 high-energy `track events'. The angular separation between the arrival directions of neutrinos and UHECRs is scanned over. The same events are also used in a separate search using a maximum likelihood approach, after the neutrino arrival directions are stacked. To estimate the significance we assume UHECR magnetic deflections to be inversely proportional to their energy, with values 33^\circ, 66^\circ and 99^\circ at 100 EeV to allow for the uncertainties on the magnetic field strength and UHECR charge. A similar analysis is performed on stacked UHECR arrival directions and the IceCube sample of through-going muon track events which were optimized for neutrino point-source searches.Comment: one proceeding, the 34th International Cosmic Ray Conference, 30 July - 6 August 2015, The Hague, The Netherlands; will appear in PoS(ICRC2015
    corecore