1,148 research outputs found

    Peripheral Ulcerative Keratitis and Necrotizing Scleritis Initiated by Trauma in the Setting of Mixed Cryoglobulinemia

    Get PDF
    Purpose: To report a case of peripheral ulcerative keratitis and necrotizing scleritis precipitated by trauma in a patient with mixed cryoglobulinemia due to hepatitis C viral infection. Methods: Case report and literature review. Results: A 62-year-old man with a history of mixed cryoglobulinemia developed an episode of necrotizing scleritis and peripheral ulcerative keratitis one month after repair of a traumatic scleral defect with patch grafting. This episode resolved following treatment with high-dose corticosteroids and the patient underwent successful repeat patch grafting along with a free conjunctival autograft. This is the second reported case of necrotizing scleritis and peripheral ulcerative keratitis associated with mixed cryoglobulinemia. Conclusion: Ophthalmologists should be aware of the association between mixed cryoglobulinemia and necrotizing scleritis/peripheral ulcerative keratitis. Patients with this condition experiencing ocular trauma or undergoing ocular surgery should be monitored closely

    Expression of monocyte chemotactic protein-3 mRNA in rat vascular smooth muscle cells and in carotid artery after balloon angioplasty

    Get PDF
    AbstractMonocyte chemotactic protein-3 (MCP-3) is a CC chemokine that functions in chemoattraction and activation of monocytes, T lymphocytes, eosinophils, basophils, natural killer cells and dendritic cells. The activation of the target cells by MCP-3 is via specific chemokine receptors CCR2 and CCR3, of which CCR2 is shared with MCP-1. MCP-1 and CCR2 have been implicated in vascular diseases including atherosclerosis and restenosis, that are known to be involved in inflammation (accumulation of T lymphocytes and monocytes) and smooth muscle cell (SMC) activation (proliferation, migration and matrix deposition). To investigate a potential role of MCP-3 in vascular injury, the present work examined its mRNA expression in rat aortic SMCs stimulated with various inflammatory stimuli including LPS, TNF-α, IL-1ÎČ, IFN-Îł and TGF-ÎČ. A time- and concentration-dependant induction of MCP-3 mRNA in SMCs was observed by means of Northern analysis. A strikingly similar expression profile was observed for MCP-3 and MCP-1 mRNA in SMCs. Furthermore, MCP-3 mRNA expression was induced in rat carotid artery after balloon angioplasty. A significant induction in MCP-3 mRNA was observed in the carotid artery at 6 h (41-fold increase over control, P<0.001), 1 day (13-fold increase, P<0.001) and 3 days (6-fold increase, P<0.01) after balloon angioplasty as quantitated by reverse transcription and polymerase chain reaction. These data provide evidence for the cytokine-induced expression of MCP-3 in SMCs and in carotid artery after balloon angioplasty, suggesting a potential role of MCP-3 in the pathogenesis of restenosis and atherosclerosis

    Orbital Aspergillosis: Voriconazole – The New Standard Treatment?

    Get PDF
    Background/Aim: To describe a case of invasive orbital aspergillosis and evaluate treatments and outcomes. Methods: A case report and review of orbital aspergillosis treatment with voriconazole in the English language literature. Conclusion: Amphotericin B with debridement is the current standard of care for orbital aspergillosis; however, its prognosis is unfavorable. When compared to amphotericin B, voriconazole demonstrates a survival benefit, has less systemic toxicity, and is better tolerated by patients. While a prospective trial comparing amphotericin B to voriconazole in orbital aspergillosis is not feasible, there is evidence to support the use of voriconazole as primary therapy

    Pink1 and Parkin regulate Drosophila intestinal stem cell proliferation during stress and aging.

    Get PDF
    Intestinal stem cells (ISCs) maintain the midgut epithelium in Drosophila melanogaster Proper cellular turnover and tissue function rely on tightly regulated rates of ISC division and appropriate differentiation of daughter cells. However, aging and epithelial injury cause elevated ISC proliferation and decreased capacity for terminal differentiation of daughter enteroblasts (EBs). The mechanisms causing functional decline of stem cells with age remain elusive; however, recent findings suggest that stem cell metabolism plays an important role in the regulation of stem cell activity. Here, we investigate how alterations in mitochondrial homeostasis modulate stem cell behavior in vivo via RNA interference-mediated knockdown of factors involved in mitochondrial dynamics. ISC/EB-specific knockdown of the mitophagy-related genes Pink1 or Parkin suppresses the age-related loss of tissue homeostasis, despite dramatic changes in mitochondrial ultrastructure and mitochondrial damage in ISCs/EBs. Maintenance of tissue homeostasis upon reduction of Pink1 or Parkin appears to result from reduction of age- and stress-induced ISC proliferation, in part, through induction of ISC senescence. Our results indicate an uncoupling of cellular, tissue, and organismal aging through inhibition of ISC proliferation and provide insight into strategies used by stem cells to maintain tissue homeostasis despite severe damage to organelles

    Rac1 drives intestinal stem cell proliferation and regeneration

    Get PDF
    Adult stem cells are responsible for maintaining the balance between cell proliferation and differentiation within self-renewing tissues. The molecular and cellular mechanisms mediating such balance are poorly understood. The production of reactive oxygen species (ROS) has emerged as an important mediator of stem cell homeostasis in various systems. Our recent work demonstrates that Rac1-dependent ROS production mediates intestinal stem cell (ISC) proliferation in mouse models of colorectal cancer (CRC). Here, we use the adult Drosophila midgut and the mouse small intestine to directly address the role of Rac1 in ISC proliferation and tissue regeneration in response to damage. Our results demonstrate that Rac1 is necessary and sufficient to drive ISC proliferation and regeneration in an ROS-dependent manner. Our data point to an evolutionarily conserved role of Rac1 in intestinal homeostasis and highlight the value of combining work in the mammalian and Drosophila intestine as paradigms to study stem cell biology

    Endothelin receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database

    Get PDF
    Endothelin receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on Endothelin Receptors [24]) are activated by the endogenous 21 amino-acid peptides endothelins 1-3 (endothelin-1, endothelin-2 and endothelin-3)

    Local control of intestinal stem cell homeostasis by enteroendocrine cells in the adult <i>Drosophila</i> midgut

    Get PDF
    Background: Enteroendocrine cells populate gastrointestinal tissues and are known to translate local cues into systemic responses through the release of hormones into the bloodstream.&lt;p&gt;&lt;/p&gt; Results: Here we report a novel function of enteroendocrine cells acting as local regulators of intestinal stem cell (ISC) proliferation through modulation of the mesenchymal stem cell niche in the &lt;i&gt;Drosophila&lt;/i&gt; midgut. This paracrine signaling acts to constrain ISC proliferation within the epithelial compartment. Mechanistically, midgut enteroendocrine cells secrete the neuroendocrine hormone Bursicon, which acts—beyond its known roles in development—as a paracrine factor on the visceral muscle (VM). Bursicon binding to its receptor, DLGR2, the ortholog of mammalian leucine-rich repeat-containing G protein-coupled receptors (LGR4-6), represses the production of the VM-derived EGF-like growth factor Vein through activation of cAMP.&lt;p&gt;&lt;/p&gt; Conclusions: We therefore identify a novel paradigm in the regulation of ISC quiescence involving the conserved ligand/receptor Bursicon/DLGR2 and a previously unrecognized tissue-intrinsic role of enteroendocrine cells.&lt;p&gt;&lt;/p&gt

    Endothelin receptors in GtoPdb v.2023.1

    Get PDF
    Endothelin receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on Endothelin Receptors [24]) are activated by the endogenous 21 amino-acid peptides endothelins 1-3 (endothelin-1, endothelin-2 and endothelin-3)

    Endothelin-Receptor Antagonists beyond Pulmonary Arterial Hypertension: Cancer and Fibrosis.

    Get PDF
    The endothelin axis and in particular the two endothelin receptors, ETA and ETB, are targets for therapeutic intervention in human diseases. Endothelin-receptor antagonists are in clinical use to treat pulmonary arterial hypertension and have been under clinical investigation for the treatment of several other diseases, such as systemic hypertension, cancer, vasospasm, and fibrogenic diseases. In this Perspective, we review the molecules that have been evaluated in human clinical trials for the treatment of pulmonary arterial hypertension, as well as other cardiovascular diseases, cancer, and fibrosis. We will also discuss the therapeutic consequences of receptor selectivity with regard to ETA-selective, ETB-selective, or dual ETA/ETB antagonists. We will also consider which chemical characteristics are relevant to clinical use and the properties of molecules necessary for efficacy in treating diseases against which known molecules displayed suboptimal efficacy
    • 

    corecore