178 research outputs found

    Small molecule inhibitors of CRM1

    Get PDF
    The transport through the nuclear pore complex is used by cancer cells to evade tumor-suppressive mechanisms. Several tumor-suppressors have been shown to be excluded from the cell nucleus in cancer cells by the nuclear export receptor CRM1 and abnormal expression of CRM1 is oncogenic. Inhibition of CRM1 has long been postulated as potential approach for the treatment of cancer and to overcome therapy resistance. Furthermore, the nuclear export of viral components mediated by the CRM1 is crucial in various stages of the viral lifecycle and assembly of many viruses from diverse families, including coronavirus. However, the first nuclear export inhibitors failed or never entered into clinical trials. More recently CRM1 reemerged as a cancer target and a successful proof of concept was achieved with the clinical approval of Selinexor. The chemical complexity of natural products is a promising perspective for the discovery of new nuclear export inhibitors with a favorable toxicity profile. Several screening campaigns have been performed and several natural product-based nuclear export inhibitors have been identified. With this review we give an overview over the role of CRM1-mediated nuclear export in cancer and the effort made to identify and develop nuclear export inhibitors in particular from natural sources.This work was supported by Fundação para a Ciência e a Tecnologia (FCT) Research Center Grant UID/BIM/04773/2013 Centre for Biomedical Research 1334 and by the Spanish Ministry of Science, Innovation and Universities through Grant RTI2018-094629-B-I00 to WL. BF was supported by FCT-SFRH/BPD/100434/2014 and Marie Curie Individual Fellowship project TRIBBLES (#748585). This work was also supported by two LPCC-NRS/Terry Fox grants (2016/2017; 2017/2018).info:eu-repo/semantics/publishedVersio

    Periostin is frequently overexpressed and enhances invasion and angiogenesis in oral cancer

    Get PDF
    Oral squamous-cell carcinoma (OSCC) is one of the most common types of human cancer. Typically OSCC cells show persistent invasion that frequently leads to local recurrence and distant lymphatic metastasis. We previously identified Periostin as the gene demonstrating the highest fold change expression in the invasive clone by comparing the transcriptional profile of parent OSCC cell line and a highly invasive clone. Here, we demonstrated that Periostin overexpression enhanced invasiveness in oral cancer cell lines. To know the role of Periostin in invasion, angiogenesis and metastasis in OSCC cases, we first examined the expression of Periostin mRNA in 31 OSCC cases by RT–PCR and Periostin protein in 74 OSCC cases by immunohistochemistry. Then, we compared the Periostin expression with invasion pattern, metastasis and blood vessel density. Periostin mRNA and protein overexpression were frequently found in OSCC cases and Periostin expression was well correlated with the invasion pattern and metastasis. Moreover, blood vessel density of Periostin-positive cases was higher than those of Periostin-negative cases. Interestingly, recombinant Periostin enhanced capillary formation in vitro in a concentration-dependant manner. In summary, these findings suggest that Periostin may promote invasion and angiogenesis in OSCC, and that Periostin can be a strong marker for prediction of metastasis in oral cancer patients

    Targeting nuclear transporters in cancer: Diagnostic, prognostic and therapeutic potential

    Get PDF
    The Karyopherin superfamily is a major class of soluble transport receptors consisting of both import and export proteins. The trafficking of proteins involved in transcription, cell signalling and cell cycle regulation among other functions across the nuclear membrane is essential for normal cellular functioning. However, in cancer cells, the altered expression or localization of nuclear transporters as well as the disruption of endogenous nuclear transport inhibitors are some ways in which the Karyopherin proteins are dysregulated. The value of nuclear transporters in the diagnosis, prognosis and treatment of cancer is currently being elucidated with recent studies highlighting their potential as biomarkers and therapeutic targets

    Two-way habitat use between reefs and open ocean in adult greater amberjack: evidence from biologging data

    Get PDF
    We investigated the relationships between vertical movements and both oceanographic features and physiological factors in greater amberjack Seriola dumerili, which is a reef-associated predator in the East China Sea. S. dumerili in the coastal waters of eastern Taiwan were equipped with archival tags or pop-up satellite archival tags that recorded depth and temperature, resulting in a dataset covering a total of 1331 d from 12 individuals. To classify the vertical movement patterns of S. dumerili, we performed a hierarchical cluster analysis for the depth profile. We observed multiple vertical movement patterns. Around topographic features, S. dumerili showed short-step dives (averaging < 35 m) during both the daytime and nighttime. In contrast, S. dumerili in offshore areas showed diel vertical movements. S. dumerili occasionally performed frequent dives to approximately 150 m throughout the day. These movements may be related to foraging behaviors associated with changes in water depth. We further analyzed the response of the peri-toneal cavity temperature to variations in the ambient temperature in 7 S. dumerili with archival tags. The peritoneal cavity temperatures fluctuated according to the ambient temperature changes, indicating that the vertical movement of S. dumerili is limited by physiological con-straints for the maintenance of body temperature. Together, our results indicate that the vertical movement of S. dumerili may be affected by the trade-off between foraging and thermoregulation

    On invariant 2x2 \beta-ensembles of random matrices

    Full text link
    We introduce and solve exactly a family of invariant 2x2 random matrices, depending on one parameter \eta, and we show that rotational invariance and real Dyson index \beta are not incompatible properties. The probability density for the entries contains a weight function and a multiple trace-trace interaction term, which corresponds to the representation of the Vandermonde-squared coupling on the basis of power sums. As a result, the effective Dyson index \beta_{eff} of the ensemble can take any real value in an interval. Two weight functions (Gaussian and non-Gaussian) are explored in detail and the connections with \beta-ensembles of Dumitriu-Edelman and the so-called Poisson-Wigner crossover for the level spacing are respectively highlighted. A curious spectral twinning between ensembles of different symmetry classes is unveiled. The proposed technical tool more generically allows for designing actual matrix models which i) are rotationally invariant; ii) have a real Dyson index \beta_{eff}; iii) have a pre-assigned confining potential or alternatively level-spacing profile. The analytical results have been checked through numerical simulations with an excellent agreement. Eventually, we discuss possible generalizations and further directions of research.Comment: Minor modifications. Published versio

    Broad targeting of resistance to apoptosis in cancer

    Get PDF
    Apoptosis or programmed cell death is natural way of removing aged cells from the body. Most of the anti-cancer therapies trigger apoptosis induction and related cell death networks to eliminate malignant cells. However, in cancer, de-regulated apoptotic signaling, particularly the activation of an anti-apoptotic systems, allows cancer cells to escape this program leading to uncontrolled proliferation resulting in tumor survival, therapeutic resistance and recurrence of cancer. This resistance is a complicated phenomenon that emanates from the interactions of various molecules and signaling pathways. In this comprehensive review we discuss the various factors contributing to apoptosis resistance in cancers. The key resistance targets that are discussed include (1) Bcl-2 and Mcl-1 proteins; (2) autophagy processes; (3) necrosis and necroptosis; (4) heat shock protein signaling; (5) the proteasome pathway; (6) epigenetic mechanisms; and (7) aberrant nuclear export signaling. The shortcomings of current therapeutic modalities are highlighted and a broad spectrum strategy using approaches including (a) gossypol; (b) epigallocatechin-3-gallate; (c) UMI-77 (d) triptolide and (e) selinexor that can be used to overcome cell death resistance is presented. This review provides a roadmap for the design of successful anti-cancer strategies that overcome resistance to apoptosis for better therapeutic outcome in patients with cancer

    Mitochonic Acid 5 (MA-5) Facilitates ATP Synthase Oligomerization and Cell Survival in Various Mitochondrial Diseases

    Get PDF
    Mitochondrial dysfunction increases oxidative stress and depletes ATP in a variety of disorders. Several antioxidant therapies and drugs affecting mitochondrial biogenesis are undergoing investigation, although not all of them have demonstrated favorable effects in the clinic. We recently reported a therapeutic mitochondrial drug mitochonic acid MA-5 (Tohoku J. Exp. Med., 2015). MA-5 increased ATP, rescued mitochondrial disease fibroblasts and prolonged the life span of the disease model “Mitomouse” (JASN, 2016). To investigate the potential of MA-5 on various mitochondrial diseases, we collected 25 cases of fibroblasts from various genetic mutations and cell protective effect of MA-5 and the ATP producing mechanism was examined. 24 out of the 25 patient fibroblasts (96%) were responded to MA-5. Under oxidative stress condition, the GDF-15 was increased and this increase was significantly abrogated by MA-5. The serum GDF-15 elevated in Mitomouse was likewise reduced by MA-5. MA-5 facilitates mitochondrial ATP production and reduces ROS independent of ETC by facilitating ATP synthase oligomerization and supercomplex formation with mitofilin/Mic60. MA-5 reduced mitochondria fragmentation, restores crista shape and dynamics. MA-5 has potential as a drug for the treatment of various mitochondrial diseases. The diagnostic use of GDF-15 will be also useful in a forthcoming MA-5 clinical trial

    Eicosanoids in skin inflammation.

    Get PDF
    NoEicosanoids play an integral part in homeostatic mechanisms related to skin health and structural integrity. They also mediate inflammatory events developed in response to environmental factors, such as exposure to ultraviolet radiation, and inflammatory and allergic disorders, including psoriasis and atopic dermatitis. This review article discusses biochemical aspects related to cutaneous eicosanoid metabolism, the contribution of these potent autacoids to skin inflammation and related conditions, and considers the importance of nutritional supplementation with bioactives such as omega-3 and omega-6 polyunsaturated fatty acids and plant-derived antioxidants as means of addressing skin health issues.The Wellcome Trust and BBSRC-DRIN
    corecore