2,125 research outputs found

    D-brane Instantons in Type II String Theory

    Full text link
    We review recent progress in determining the effects of D-brane instantons in N=1 supersymmetric compactifications of Type II string theory to four dimensions. We describe the abstract D-brane instanton calculus for holomorphic couplings such as the superpotential, the gauge kinetic function and higher fermionic F-terms. This includes a discussion of multi-instanton effects and the implications of background fluxes for the instanton sector. Our presentation also highlights, but is not restricted to the computation of D-brane instanton effects in quiver gauge theories on D-branes at singularities. We then summarize the concrete consequences of stringy D-brane instantons for the construction of semi-realistic models of particle physics or SUSY-breaking in compact and non-compact geometries.Comment: Invited review to appear in Annu.Rev.Nuc.Part.Sci 2009 59; 69 pages, 8 figures, 5 tables; v2: 1 reference adde

    New higher-order transition in causal dynamical triangulations

    Get PDF
    We reinvestigate the recently discovered bifurcation phase transition in Causal Dynamical Triangulations (CDT) and provide further evidence that it is a higher order transition. We also investigate the impact of introducing matter in the form of massless scalar fields to CDT. We discuss the impact of scalar fields on the measured spatial volumes and fluctuation profiles in addition to analysing how the scalar fields influence the position of the bifurcation transition.Comment: 15 pages, 11 figures. Conforms with version accepted for publication in Phys. Rev.

    Simulation of some quantum gates, with decoherence

    Full text link
    Methods and results for numerical simulations of one and two interacting rf-Squid systems suitable for adiabatic quantum gates are presented. These are based on high accuracy numerical solutions to the static and time dependent Schroedinger equation for the full Squid Hamiltonian in one and two variables. Among the points examined in the static analysis is the range of validity of the effective two-state or ``spin 1/2'' picture. A range of parameters is determined where the picture holds to good accuracy as the energy levels undergo gate manipulations. Some general points are presented concerning the relations between device parameters and ``good'' quantum mechanical state spaces. The time dependent simulations allow the examination of suitable conditions for adiabatic behavior, and permits the introduction of a random noise to simulate the effects of decoherence. A formula is derived and tested relating the random noise to the decoherence rate. Sensitivity to device and operating parameters for the logical gates NOT and CNOT are examined, with particular attention to values of the tunnel parameter beta slightly above one. It appears that with values of beta close to one, a quantum CNOT gate is possible even with rather short decoherence times. Many of the methods and results will apply to coupled double-potential well systems in general.Comment: 26 pages, 15 figures, Some clarification added on decoherence treatment, many small errors corrected, symbols on some figures enlarged, refs added. No change in conten

    Planckian Birth of the Quantum de Sitter Universe

    Full text link
    We show that the quantum universe emerging from a nonperturbative, Lorentzian sum-over-geometries can be described with high accuracy by a four-dimensional de Sitter spacetime. By a scaling analysis involving Newton's constant, we establish that the linear size of the quantum universes under study is in between 17 and 28 Planck lengths. Somewhat surprisingly, the measured quantum fluctuations around the de Sitter universe in this regime are to good approximation still describable semiclassically. The numerical evidence presented comes from a regularization of quantum gravity in terms of causal dynamical triangulations.Comment: Article unchanged. Line added in acknowledgmen

    Toward Realistic Intersecting D-Brane Models

    Full text link
    We provide a pedagogical introduction to a recently studied class of phenomenologically interesting string models, known as Intersecting D-Brane Models. The gauge fields of the Standard-Model are localized on D-branes wrapping certain compact cycles on an underlying geometry, whose intersections can give rise to chiral fermions. We address the basic issues and also provide an overview of the recent activity in this field. This article is intended to serve non-experts with explanations of the fundamental aspects, and also to provide some orientation for both experts and non-experts in this active field of string phenomenology.Comment: 85 pages, 8 figures, Latex, Bibtex, v2: refs added, typos correcte

    Moduli Stabilization in Toroidal Type IIB Orientifolds

    Full text link
    We discuss the first step in the moduli stabilization program a la KKLT for a general class of resolved toroidal type IIB orientifolds. In particular, we discuss their geometry, the topology of the divisors relevant for the D3-brane instantons which can contribute to the superpotential, and some non--trivial aspects of the orientifold action.Comment: 15 pages, 3 figures, contribution to the proceedings of the RTN workshop "Constituents, Fundamental Forces and Symmetries of the Universe", Corfu, Greece, 20-26 September 200

    The Cleo Rich Detector

    Full text link
    We describe the design, construction and performance of a Ring Imaging Cherenkov Detector (RICH) constructed to identify charged particles in the CLEO experiment. Cherenkov radiation occurs in LiF crystals, both planar and ones with a novel ``sawtooth''-shaped exit surface. Photons in the wavelength interval 135--165 nm are detected using multi-wire chambers filled with a mixture of methane gas and triethylamine vapor. Excellent pion/kaon separation is demonstrated.Comment: 75 pages, 57 figures, (updated July 26, 2005 to reflect reviewers comments), to be published in NIM
    corecore