63 research outputs found

    Phase 1/2a Study of the Malaria Vaccine Candidate Apical Membrane Antigen-1 (AMA-1) Administered in Adjuvant System AS01B or AS02A

    Get PDF
    Contains fulltext : 79496.pdf (publisher's version ) (Open Access)BACKGROUND: This Phase 1/2a study evaluated the safety, immunogenicity, and efficacy of an experimental malaria vaccine comprised of the recombinant Plasmodium falciparum protein apical membrane antigen-1 (AMA-1) representing the 3D7 allele formulated with either the AS01B or AS02A Adjuvant Systems. METHODOLOGY/PRINCIPAL FINDINGS: After a preliminary safety evaluation of low dose AMA-1/AS01B (10 microg/0.5 mL) in 5 adults, 30 malaria-naive adults were randomly allocated to receive full dose (50 microg/0.5 mL) of AMA-1/AS01B (n = 15) or AMA-1/AS02A (n = 15), followed by a malaria challenge. All vaccinations were administered intramuscularly on a 0-, 1-, 2-month schedule. All volunteers experienced transient injection site erythema, swelling and pain. Two weeks post-third vaccination, anti-AMA-1 Geometric Mean Antibody Concentrations (GMCs) with 95% Confidence Intervals (CIs) were high: low dose AMA-1/AS01B 196 microg/mL (103-371 microg/mL), full dose AMA-1/AS01B 279 microg/mL (210-369 microg/mL) and full dose AMA-1/AS02A 216 microg/mL (169-276 microg/mL) with no significant difference among the 3 groups. The three vaccine formulations elicited equivalent functional antibody responses, as measured by growth inhibition assay (GIA), against homologous but not against heterologous (FVO) parasites as well as demonstrable interferon-gamma (IFN-gamma) responses. To assess efficacy, volunteers were challenged with P. falciparum-infected mosquitoes, and all became parasitemic, with no significant difference in the prepatent period by either light microscopy or quantitative polymerase chain reaction (qPCR). However, a small but significant reduction of parasitemia in the AMA-1/AS02A group was seen with a statistical model employing qPCR measurements. SIGNIFICANCE: All three vaccine formulations were found to be safe and highly immunogenic. These immune responses did not translate into significant vaccine efficacy in malaria-naive adults employing a primary sporozoite challenge model, but encouragingly, estimation of parasite growth rates from qPCR data may suggest a partial biological effect of the vaccine. Further evaluation of the immunogenicity and efficacy of the AMA-1/AS02A formulation is ongoing in a malaria-experienced pediatric population in Mali. TRIAL REGISTRATION: www.clinicaltrials.gov NCT00385047

    Sterile Protection against Plasmodium knowlesi in Rhesus Monkeys from a Malaria Vaccine: Comparison of Heterologous Prime Boost Strategies

    Get PDF
    Using newer vaccine platforms which have been effective against malaria in rodent models, we tested five immunization regimens against Plasmodium knowlesi in rhesus monkeys. All vaccines included the same four P. knowlesi antigens: the pre-erythrocytic antigens CSP, SSP2, and erythrocytic antigens AMA1, MSP1. We used four vaccine platforms for prime or boost vaccinations: plasmids (DNA), alphavirus replicons (VRP), attenuated adenovirus serotype 5 (Ad), or attenuated poxvirus (Pox). These four platforms combined to produce five different prime/boost vaccine regimens: Pox alone, VRP/Pox, VRP/Ad, Ad/Pox, and DNA/Pox. Five rhesus monkeys were immunized with each regimen, and five Control monkeys received a mock vaccination. The time to complete vaccinations was 420 days. All monkeys were challenged twice with 100 P. knowlesi sporozoites given IV. The first challenge was given 12 days after the last vaccination, and the monkeys receiving the DNA/Pox vaccine were the best protected, with 3/5 monkeys sterilely protected and 1/5 monkeys that self-cured its parasitemia. There was no protection in monkeys that received Pox malaria vaccine alone without previous priming. The second sporozoite challenge was given 4 months after the first. All 4 monkeys that were protected in the first challenge developed malaria in the second challenge. DNA, VRP and Ad5 vaccines all primed monkeys for strong immune responses after the Pox boost. We discuss the high level but short duration of protection in this experiment and the possible benefits of the long interval between prime and boost

    Immunization with Radiation-Attenuated Plasmodium berghei Sporozoites Induces Liver cCD8α+DC that Activate CD8+T Cells against Liver-Stage Malaria

    Get PDF
    Immunization with radiation (γ)-attenuated Plasmodia sporozoites (γ-spz) confers sterile and long-lasting immunity against malaria liver-stage infection. In the P. berghei γ-spz model, protection is linked to liver CD8+ T cells that express an effector/memory (TEM) phenotype, (CD44hiCD45RBloCD62Llo ), and produce IFN-γ. However, neither the antigen presenting cells (APC) that activate these CD8+ TEM cells nor the site of their induction have been fully investigated. Because conventional (c)CD8α+ DC (a subset of CD11c+ DC) are considered the major inducers of CD8+ T cells, in this study we focused primarily on cCD8α+ DC from livers of mice immunized with Pb γ-spz and asked whether the cCD8α+ DC might be involved in the activation of CD8+ TEM cells. We demonstrate that multiple exposures of mice to Pb γ-spz lead to a progressive and nearly concurrent accumulation in the liver but not the spleen of both the CD11c+NK1.1− DC and CD8+ TEM cells. Upon adoptive transfer, liver CD11c+NK1.1− DC from Pb γ-spz-immunized mice induced protective immunity against sporozoite challenge. Moreover, in an in vitro system, liver cCD8α+ DC induced naïve CD8+ T cells to express the CD8+ TEM phenotype and to secrete IFN-γ. The in vitro induction of functional CD8+ TEM cells by cCD8α+ DC was inhibited by anti-MHC class I and anti-IL-12 mAbs. These data suggest that liver cCD8α+ DC present liver-stage antigens to activate CD8+ TEM cells, the pre-eminent effectors against pre-erythrocytic malaria. These results provide important implications towards a design of anti-malaria vaccines

    Geolocation with respect to persona privacy for the Allergy Diary app - a MASK study

    Get PDF
    Background: Collecting data on the localization of users is a key issue for the MASK (Mobile Airways Sentinel network: the Allergy Diary) App. Data anonymization is a method of sanitization for privacy. The European Commission's Article 29 Working Party stated that geolocation information is personal data. To assess geolocation using the MASK method and to compare two anonymization methods in the MASK database to find an optimal privacy method. Methods: Geolocation was studied for all people who used the Allergy Diary App from December 2015 to November 2017 and who reported medical outcomes. Two different anonymization methods have been evaluated: Noise addition (randomization) and k-anonymity (generalization). Results: Ninety-three thousand one hundred and sixteen days of VAS were collected from 8535 users and 54,500 (58. 5%) were geolocalized, corresponding to 5428 users. Noise addition was found to be less accurate than k-anonymity using MASK data to protect the users' life privacy. Discussion: k-anonymity is an acceptable method for the anonymization of MASK data and results can be used for other databases.Peer reviewe

    Allergic Rhinitis and its Impact on Asthma (ARIA) Phase 4 (2018) : Change management in allergic rhinitis and asthma multimorbidity using mobile technology

    Get PDF
    Allergic Rhinitis and its Impact on Asthma (ARIA) has evolved from a guideline by using the best approach to integrated care pathways using mobile technology in patients with allergic rhinitis (AR) and asthma multimorbidity. The proposed next phase of ARIA is change management, with the aim of providing an active and healthy life to patients with rhinitis and to those with asthma multimorbidity across the lifecycle irrespective of their sex or socioeconomic status to reduce health and social inequities incurred by the disease. ARIA has followed the 8-step model of Kotter to assess and implement the effect of rhinitis on asthma multimorbidity and to propose multimorbid guidelines. A second change management strategy is proposed by ARIA Phase 4 to increase self-medication and shared decision making in rhinitis and asthma multimorbidity. An innovation of ARIA has been the development and validation of information technology evidence-based tools (Mobile Airways Sentinel Network [MASK]) that can inform patient decisions on the basis of a self-care plan proposed by the health care professional.Peer reviewe

    Relationship between the Clinical Frailty Scale and short-term mortality in patients ≥ 80 years old acutely admitted to the ICU: a prospective cohort study.

    Get PDF
    BACKGROUND: The Clinical Frailty Scale (CFS) is frequently used to measure frailty in critically ill adults. There is wide variation in the approach to analysing the relationship between the CFS score and mortality after admission to the ICU. This study aimed to evaluate the influence of modelling approach on the association between the CFS score and short-term mortality and quantify the prognostic value of frailty in this context. METHODS: We analysed data from two multicentre prospective cohort studies which enrolled intensive care unit patients ≥ 80 years old in 26 countries. The primary outcome was mortality within 30-days from admission to the ICU. Logistic regression models for both ICU and 30-day mortality included the CFS score as either a categorical, continuous or dichotomous variable and were adjusted for patient's age, sex, reason for admission to the ICU, and admission Sequential Organ Failure Assessment score. RESULTS: The median age in the sample of 7487 consecutive patients was 84 years (IQR 81-87). The highest fraction of new prognostic information from frailty in the context of 30-day mortality was observed when the CFS score was treated as either a categorical variable using all original levels of frailty or a nonlinear continuous variable and was equal to 9% using these modelling approaches (p < 0.001). The relationship between the CFS score and mortality was nonlinear (p < 0.01). CONCLUSION: Knowledge about a patient's frailty status adds a substantial amount of new prognostic information at the moment of admission to the ICU. Arbitrary simplification of the CFS score into fewer groups than originally intended leads to a loss of information and should be avoided. Trial registration NCT03134807 (VIP1), NCT03370692 (VIP2)

    Adherence to treatment in allergic rhinitis using mobile technology. The MASK Study

    Get PDF
    Background: Mobile technology may help to better understand the adherence to treatment. MASK-rhinitis (Mobile Airways Sentinel NetworK for allergic rhinitis) is a patient-centred ICT system. A mobile phone app (the Allergy Diary) central to MASK is available in 22 countries. Objectives: To assess the adherence to treatment in allergic rhinitis patients using the Allergy Diary App. Methods: An observational cross-sectional study was carried out on all users who filled in the Allergy Diary from 1 January 2016 to 1 August 2017. Secondary adherence was assessed by using the modified Medication Possession Ratio (MPR) and the Proportion of days covered (PDC) approach. Results: A total of 12143 users were registered. A total of 6949 users reported at least one VAS data recording. Among them, 1887 users reported >= 7 VAS data. About 1195 subjects were included in the analysis of adherence. One hundred and thirty-six (11.28%) users were adherent (MPR >= 70% and PDC = 70% and PDC = 1.50) and 176 (14.60%) were switchers. On the other hand, 832 (69.05%) users were non-adherent to medications (MPR Conclusion and clinical relevance: Adherence to treatment is low. The relative efficacy of continuous vs on-demand treatment for allergic rhinitis symptoms is still a matter of debate. This study shows an approach for measuring retrospective adherence based on a mobile app. This also represents a novel approach for analysing medication-taking behaviour in a real-world setting.Peer reviewe

    Guidance to 2018 good practice : ARIA digitally-enabled, integrated, person-centred care for rhinitis and asthma

    Get PDF
    AimsMobile Airways Sentinel NetworK (MASK) belongs to the Fondation Partenariale MACVIA-LR of Montpellier, France and aims to provide an active and healthy life to rhinitis sufferers and to those with asthma multimorbidity across the life cycle, whatever their gender or socio-economic status, in order to reduce health and social inequities incurred by the disease and to improve the digital transformation of health and care. The ultimate goal is to change the management strategy in chronic diseases.MethodsMASK implements ICT technologies for individualized and predictive medicine to develop novel care pathways by a multi-disciplinary group centred around the patients.StakeholdersInclude patients, health care professionals (pharmacists and physicians), authorities, patient's associations, private and public sectors.ResultsMASK is deployed in 23 countries and 17 languages. 26,000 users have registered.EU grants (2018)MASK is participating in EU projects (POLLAR: impact of air POLLution in Asthma and Rhinitis, EIT Health, DigitalHealthEurope, Euriphi and Vigour).Lessons learnt(i) Adherence to treatment is the major problem of allergic disease, (ii) Self-management strategies should be considerably expanded (behavioural), (iii) Change management is essential in allergic diseases, (iv) Education strategies should be reconsidered using a patient-centred approach and (v) Lessons learnt for allergic diseases can be expanded to chronic diseases.Peer reviewe

    Correlation between work impairment, scores of rhinitis severity and asthma using the MASK-air (R) App

    Get PDF
    Background In allergic rhinitis, a relevant outcome providing information on the effectiveness of interventions is needed. In MASK-air (Mobile Airways Sentinel Network), a visual analogue scale (VAS) for work is used as a relevant outcome. This study aimed to assess the performance of the work VAS work by comparing VAS work with other VAS measurements and symptom-medication scores obtained concurrently. Methods All consecutive MASK-air users in 23 countries from 1 June 2016 to 31 October 2018 were included (14 189 users; 205 904 days). Geolocalized users self-assessed daily symptom control using the touchscreen functionality on their smart phone to click on VAS scores (ranging from 0 to 100) for overall symptoms (global), nose, eyes, asthma and work. Two symptom-medication scores were used: the modified EAACI CSMS score and the MASK control score for rhinitis. To assess data quality, the intra-individual response variability (IRV) index was calculated. Results A strong correlation was observed between VAS work and other VAS. The highest levels for correlation with VAS work and variance explained in VAS work were found with VAS global, followed by VAS nose, eye and asthma. In comparison with VAS global, the mCSMS and MASK control score showed a lower correlation with VAS work. Results are unlikely to be explained by a low quality of data arising from repeated VAS measures. Conclusions VAS work correlates with other outcomes (VAS global, nose, eye and asthma) but less well with a symptom-medication score. VAS work should be considered as a potentially useful AR outcome in intervention studies.Peer reviewe

    Why Functional Pre-Erythrocytic and Bloodstage Malaria Vaccines Fail: A Meta-Analysis of Fully Protective Immunizations and Novel Immunological Model

    Get PDF
    Background: Clinically protective malaria vaccines consistently fail to protect adults and children in endemic settings, and at best only partially protect infants. Methodology/Principal Findings: We identify and evaluate 1916 immunization studies between 1965-February 2010, and exclude partially or nonprotective results to find 177 completely protective immunization experiments. Detailed reexamination reveals an unexpectedly mundane basis for selective vaccine failure: live malaria parasites in the skin inhibit vaccine function. We next show published molecular and cellular data support a testable, novel model where parasite-host interactions in the skin induce malaria-specific regulatory T cells, and subvert early antigen-specific immunity to parasite-specific immunotolerance. This ensures infection and tolerance to reinfection. Exposure to Plasmodium-infected mosquito bites therefore systematically triggers immunosuppression of endemic vaccine-elicited responses. The extensive vaccine trial data solidly substantiate this model experimentally. Conclusions/Significance: We conclude skinstage-initiated immunosuppression, unassociated with bloodstage parasites, systematically blocks vaccine function in the field. Our model exposes novel molecular and procedural strategies to significantly and quickly increase protective efficacy in both pipeline and currently ineffective malaria vaccines, and forces fundamental reassessment of central precepts determining vaccine development. This has major implications fo
    corecore