118 research outputs found

    SPSTracker: Sub-Peak Suppression of Response Map for Robust Object Tracking

    Full text link
    Modern visual trackers usually construct online learning models under the assumption that the feature response has a Gaussian distribution with target-centered peak response. Nevertheless, such an assumption is implausible when there is progressive interference from other targets and/or background noise, which produce sub-peaks on the tracking response map and cause model drift. In this paper, we propose a rectified online learning approach for sub-peak response suppression and peak response enforcement and target at handling progressive interference in a systematic way. Our approach, referred to as SPSTracker, applies simple-yet-efficient Peak Response Pooling (PRP) to aggregate and align discriminative features, as well as leveraging a Boundary Response Truncation (BRT) to reduce the variance of feature response. By fusing with multi-scale features, SPSTracker aggregates the response distribution of multiple sub-peaks to a single maximum peak, which enforces the discriminative capability of features for robust object tracking. Experiments on the OTB, NFS and VOT2018 benchmarks demonstrate that SPSTrack outperforms the state-of-the-art real-time trackers with significant margins.Comment: Accepted as oral paper at AAAI202

    CNN based Real-time Forest Fire Detection System for Low-power Embedded Devices

    Get PDF
    This paper proposes a system architecture that uses deep learning image processing techniques to automatically identify forest fires in real-time using neural network models for small UAV applications. Considering the strict power and payload constraints of small UAVs, the proposed model runs on a compact, lightweight Raspberry Pi4B (RPi4B) and its performance is comparable to the state-of-the-art metrics (accuracy and real-time response) while achieving significant reduction in CPU usage and power consumption. The proposed YOLOv5 optimization approach used in this paper includes: 1) Replacing the backbone network to ShuffleNetV2, 2) Pruning the Head and Neck network following the backbone baseline, 3) Sparse training to implement the model-pruning method, 4) Fine-tuning of the pruned network to recover the detection accuracy and 5) Hardware acceleration by overclocking the RPi4B to improve the inference speed of the algorithm. Experimental results of the proposed forest fire detection system show that the proposed algorithm compared to the state-of-the-art that run on RPi single board computer, achieves 50% higher inference speed (9 FPS), reduction in CPU usage and temperature by 35% and 25% respectively and 10% reduced power consumption while the accuracy (92.5%) is only compromised by 2%. Finally, it is worth noting that the accuracy of the proposed algorithm is not affected by deviations in the bird-eye view angle

    E-Cadherin/β-Catenin Complex and the Epithelial Barrier

    Get PDF
    E-Cadherin/β-catenin complex plays an important role in maintaining epithelial integrity and disrupting this complex affect not only the adhesive repertoire of a cell, but also the Wnt-signaling pathway. Aberrant expression of the complex is associated with a wide variety of human malignancies and disorders of fibrosis resulting from epithelial-mesenchymal transition. These associations provide insights into the complexity that is likely responsible for the fibrosis/tumor suppressive action of E-cadherin/β-catenin

    Graphene-induced unique polarization tuning properties of excessively tilted fiber grating

    Get PDF
    By exploiting the polarization-sensitive coupling effect of graphene with the optical mode, we investigate the polarization modulation properties of a hybrid waveguide of graphene-integrated excessively tilted fiber grating (Ex-TFG). The theoretical analysis and experimental results demonstrate that the real and imaginary parts of complex refractive index of fewlayer graphene exhibit different effects on transverse electric (TE) and transverse magnetic (TM) cladding modes of the Ex-TFG, enabling stronger absorption in the TE mode and more wavelength shift in the TM mode. Furthermore, the surrounding refractive index can modulate the complex optical constant of graphene and then the polarization properties of the hybrid waveguide, such as resonant wavelength and peak intensity. Therefore, the unique polarization tuning property induced by the integration of the graphene layer with Ex-TFG may endow potential applications in all-in-one fiber modulators, fiber lasers, and biochemical sensors

    Genetic Properties of a Nested Association Mapping Population Constructed With Semi-Winter and Spring Oilseed Rapes

    Get PDF
    Nested association mapping (NAM) populations have been widely applied to dissect the genetic basis of complex quantitative traits in a variety of crops. In this study, we developed a Brassica napus NAM (BN-NAM) population consisting of 15 recombination inbred line (RIL) families with 2,425 immortal genotypes. Fifteen high-density genetic linkage maps were constructed by genotyping by sequencing (GBS) based on all RIL families, with further integration into a joint linkage map (JLM) having 30,209 unique markers in common with multiple linkage maps. Furthermore, an ultra-density whole-genome variation map was constructed by projecting 4,444,309 high-quality variants onto the JLM. The NAM population captured a total of 88,542 recombination events (REs). The uneven distribution of recombination rate along chromosomes is positively correlated with the densities of genes and markers, but negatively correlated with the density of transposable elements and linkage disequilibrium (LD). Analyses of population structure and principal components revealed that the BN-NAM population could be divided into three groups with weak stratification. The LD decay distance across genome varied between 170 and 2,400 Kb, with LD decay more rapid in the A than in the C sub-genome. The pericentromeric regions contained large LD blocks, especially in the C sub-genome. This NAM population provides a valuable resource for dissecting the genetic basis of important traits in rapeseed, especially in semi-winter oilseed rape

    Giant All-Optical Modulation of Second-Harmonic Generation Mediated by Dark Excitons.

    Get PDF
    All-optical control of nonlinear photonic processes in nanomaterials is of significant interest from a fundamental viewpoint and with regard to applications ranging from ultrafast data processing to spectroscopy and quantum technology. However, these applications rely on a high degree of control over the nonlinear response, which still remains elusive. Here, we demonstrate giant and broadband all-optical ultrafast modulation of second-harmonic generation (SHG) in monolayer transition-metal dichalcogenides mediated by the modified excitonic oscillation strength produced upon optical pumping. We reveal a dominant role of dark excitons to enhance SHG by up to a factor of ∼386 at room temperature, 2 orders of magnitude larger than the current state-of-the-art all-optical modulation results. The amplitude and sign of the observed SHG modulation can be adjusted over a broad spectral range spanning a few electronvolts with ultrafast response down to the sub-picosecond scale via different carrier dynamics. Our results not only introduce an efficient method to study intriguing exciton dynamics, but also reveal a new mechanism involving dark excitons to regulate all-optical nonlinear photonics

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe
    corecore