Association for the Advancement of Artificial Intelligence: AAAI Publications
Not a member yet
25748 research outputs found
Sort by
CG-TGAN: Conditional Generative Adversarial Networks with Graph Neural Networks for Tabular Data Synthesizing
Data sharing is necessary for AI to be widely used, but sharing sensitive data with others with privacy is risky.
To solve these problems, it is necessary to synthesize realistic tabular data.
In many cases, tabular data contains a mixture of continuous, mixed, categorical columns.
Moreover, columns of the same type may have multimodal distribution or be highly imbalanced.
These issues make it challenging to synthesize tabular data.
The synthesized tabular data should reflect the relational meaning between columns of tabular data, so modeling the probability distribution of tabular data is a non-trivial task.
Traditional tabular data synthesizing models are based on GAN or diffusion models and are built using fully connected or convolutional layers.
However, fully connected layers have the disadvantage of low inductive bias, and convolutional layers are not invariant to the column order of tabular data.
Therefore, we assume that converting tabular data into graph-structured data and using a graph neural network would produce better synthetic data than using fully connected layers or convolutional layers.
Our study aims to show that GANs constructed with graph neural networks can outperform existing GAN models using fully connected layers or convolutional layers.
We propose CG-TGAN, a conditional GAN built using graph neural networks. To learn how to synthesize realistic data, the graph neural networks in the discriminator and generator learn graph-level tasks and node-level tasks together.
The discriminator of CG-TGAN learns a graph-level task to distinguish between real and synthetic data and node-level tasks to predict the value of the target node.
CG-TGAN’s generator learns a graph-level task to synthesize an overall graph similar to real data and node-level tasks to learn how to synthesize a fake graph with the proper relation between nodes.
In this paper, we show that CG-TGAN outperforms GAN-based models and is comparable to diffusion-based models
From PEFT to DEFT: Parameter Efficient Finetuning for Reducing Activation Density in Transformers
Pretrained Language Models (PLMs) have become the de facto starting point for fine-tuning on downstream tasks. However, as model sizes continue to increase, traditional fine-tuning of all parameters becomes challenging. To address this, parameter-efficient fine-tuning (PEFT) methods have gained popularity as a means to adapt PLMs effectively. In parallel, recent studies have revealed the presence of activation sparsity within the intermediate outputs of the multilayer perceptron (MLP) blocks in transformers. Low activation density enables efficient model inference on sparsity-aware hardware. Building upon this insight, in this work, we propose a novel density loss that encourages higher activation sparsity (equivalently, lower activation density) in the pre-trained models. We demonstrate the effectiveness of our approach by utilizing mainstream PEFT techniques, including QLoRA, LoRA, Adapter, and Prompt/Prefix Tuning, to facilitate efficient model adaptation across diverse downstream tasks. Experiments show that our proposed method, DEFT (Density-Efficient Fine-Tuning), can consistently reduce activation density by up to 44.94% on RoBERTa (Large) and by 53.19 (encoder density) and 90.60% (decoder density) on Flan-T5-XXL (11B) compared to PEFT, using GLUE and QA (SQuAD) benchmarks respectively while maintaining competitive performance on downstream tasks. We also introduce ADA-DEFT, an adaptive variant of our DEFT approach, which achieves significant memory and runtime savings during inference for large models. For instance, ADA-DEFT reduces runtime by 8.75% and memory usage by 16.78% in Flan-T5-XL and by 2.79% and 2.54%, respectively, in Flan-T5- XXL. Additionally, we showcase that DEFT works complementarily with quantized and pruned models
Hierarchical Mixture of Experts: Generalizable Learning for High-Level Synthesis
High-level synthesis (HLS) is a widely used tool in designing Field Programmable Gate Array (FPGA). HLS enables FPGA design with software programming languages by compiling the source code into an FPGA circuit. The source code includes a program (called ``kernel'') and several pragmas that instruct hardware synthesis, such as parallelization, pipeline, etc. While it is relatively easy for software developers to design the program, it heavily relies on hardware knowledge to design the pragmas, posing a big challenge for software developers. Recently, different machine learning algorithms, such as GNNs, have been proposed to automate the pragma design via performance prediction. However, when applying the trained model on new kernels, the significant domain shift often leads to unsatisfactory performance. We propose a more domain-generalizable model structure: a two-level hierarchical Mixture of Experts (MoE), that can be flexibly adapted to any GNN model. Different expert networks can learn to deal with different regions in the representation space, and they can utilize similar patterns between the old kernels and new kernels. In the low-level MoE, we apply MoE on three natural granularities of a program: node, basic block, and graph. The high-level MoE learns to aggregate the three granularities for the final decision. To stably train the hierarchical MoE, we further propose a two-stage training method. Extensive experiments verify the effectiveness of the hierarchical MoE
DomCLP: Domain-wise Contrastive Learning with Prototype Mixup for Unsupervised Domain Generalization
Self-supervised learning (SSL) methods based on the instance discrimination tasks with InfoNCE have achieved remarkable success. Despite their success, SSL models often struggle to generate effective representations for unseen-domain data. To address this issue, research on unsupervised domain generalization (UDG), which aims to develop SSL models that can generate domain-irrelevant features, has been conducted. Most UDG approaches utilize contrastive learning with InfoNCE to generate representations, and perform feature alignment based on strong assumptions to generalize domain-irrelevant common features from multi-source domains. However, existing methods that rely on instance discrimination tasks are not effective at extracting domain-irrelevant common features. This leads to the suppression of domain-irrelevant common features and the amplification of domain-relevant features, thereby hindering domain generalization. Furthermore, strong assumptions underlying feature alignment can lead to biased feature learning, reducing the diversity of common features. In this paper, we propose a novel approach, DomCLP, Domain-wise Contrastive Learning with Prototype Mixup. We explore how InfoNCE suppresses domain-irrelevant common features and amplifies domain-relevant features. Based on this analysis, we propose Domain-wise Contrastive Learning (DCon) to enhance domain-irrelevant common features. We also propose Prototype Mixup Learning (PMix) to generalize domain-irrelevant common features across multiple domains without relying on strong assumptions. The proposed method consistently outperforms state-of-the-art methods on the PACS and DomainNet datasets across various label fractions, showing significant improvements
Adaptive Dual Guidance Knowledge Distillation
Knowledge distillation (KD) aims to improve the performance of lightweight student networks under the guidance of pre-trained teachers. However, the large capacity gap between teachers and students limits the distillation gains. Previous methods addressing this problem have two weaknesses. First, most of them decrease the performance of pre-trained teachers, hindering students from achieving comparable performance. Second, these methods fail to dynamically adjust the transferred knowledge to be compatible with the representation ability of students, which is less effective in bridging the capacity gap. In this paper, we propose Adaptive Dual Guidance Knowledge Distillation (ADG-KD), which retains the guidance of the pre-trained teacher and uses the teacher's bidirectional optimization route guiding the student to alleviate the capacity gap problem. Specifically, ADG-KD introduces an initialized teacher, which has an identical structure to the pre-trained teacher and is optimized through the bidirectional supervision from both the pre-trained teacher and student. In this way, we construct the teacher's bidirectional optimization route to provide the students with an easy-to-hard and compatible knowledge sequence. ADG-KD trains the students under the proposed dual guidance approaches and automatically determines their importance weights, making the transferred knowledge better compatible with the representation ability of students. Extensive experiments on CIFAR-100, ImageNet, and MS-COCO demonstrate the effectiveness of our method
Detecting and Corrupting Convolution-based Unlearnable Examples
Convolution-based unlearnable examples (UEs) employ class-wise multiplicative convolutional noise to training samples, severely compromising model performance. This fire-new type of UEs have successfully countered all defense mechanisms against UEs. The failure of such defenses can be attributed to the absence of norm constraints on convolutional noise, leading to severe blurring of image features. To address this, we first design an Edge Pixel-based Detector (EPD) to identify convolution-based UEs. Upon detection of them, we propose the first defense scheme against convolution-based UEs, COrrupting these samples via random matrix multiplication by employing bilinear INterpolation (COIN) such that disrupting the distribution of class-wise multiplicative noise. To evaluate the generalization of our proposed COIN, we newly design two convolution-based UEs called VUDA and HUDA to expand the scope of convolution-based UEs. Extensive experiments demonstrate the effectiveness of detection scheme EPD and that our defense COIN outperforms 11 state-of-the-art (SOTA) defenses, achieving a significant improvement on the CIFAR and ImageNet datasets
Federated t-SNE and UMAP for Distributed Data Visualization
High-dimensional data visualization is crucial in big data era and these techniques such as t-SNE and UMAP have been widely used in science and engineering. Big data, however, is often distributed across multiple data centers and subject to security and privacy concerns, which leads to difficulties for the standard algorithms of t-SNE and UMAP. To tackle the challenge, this work proposes Fed-tSNE and Fed-UMAP, which provide high-dimensional data visualization under the framework of federated learning, without exchanging data across clients or sending data to the central server. The main idea of Fed-tSNE and Fed-UMAP is implicitly learning the distribution information of data in a manner of federated learning and then estimating the global distance matrix for t-SNE and UMAP. To further enhance the protection of data privacy, we propose Fed-tSNE+ and Fed-UMAP+. We also extend our idea to federated spectral clustering, yielding algorithms of clustering distributed data. In addition to these new algorithms, we offer theoretical guarantees of distance and similarity estimation and analyze the property of differential privacy. Experiments on multiple datasets demonstrate that, compared to the original algorithms, the accuracy drops of our federated algorithms are tiny
TimeCAP: Learning to Contextualize, Augment, and Predict Time Series Events with Large Language Model Agents
Time series data is essential in various applications, including climate modeling, healthcare monitoring, and financial analytics. Understanding the contextual information associated with real-world time series data is often essential for accurate and reliable event predictions. In this paper, we introduce TimeCAP, a time-series processing framework that creatively employs Large Language Models (LLMs) as contextualizers of time series data, extending their typical usage as predictors. TimeCAP incorporates two independent LLM agents: one generates a textual summary capturing the context of the time series, while the other uses this enriched summary to make more informed predictions. In addition, TimeCAP employs a multi-modal encoder that synergizes with the LLM agents, enhancing predictive performance through mutual augmentation of inputs with in-context examples. Experimental results on real-world datasets demonstrate that TimeCAP outperforms state-of-the-art methods for time series event prediction, including those utilizing LLMs as predictors, achieving an average improvement of 28.75% in F1 score
Enhancing Masked Time-Series Modeling via Dropping Patches
This paper explores how to enhance existing masked time-series modeling by randomly dropping sub-sequence level patches of time series. On this basis, a simple yet effective method named DropPatch is proposed, which has two remarkable advantages: 1) It improves the pre-training efficiency by a square-level advantage; 2) It provides additional advantages for modeling in scenarios such as in-domain, cross-domain, few-shot learning and cold start. This paper conducts comprehensive experiments to verify the effectiveness of the method and analyze its internal mechanism. Empirically, DropPatch strengthens the attention mechanism, reduces information redundancy and serves as an efficient means of data augmentation. Theoretically, it is proved that DropPatch slows down the rate at which the Transformer representations collapse into the rank-1 linear subspace by randomly dropping patches, thus optimizing the quality of the learned representations
MARS: Mixture of Auto-Regressive Models for Fine-grained Text-to-image Synthesis
Auto-regressive models have made significant progress in the realm of text-to-image synthesis, yet devising an appropriate model architecture and training strategy to achieve a satisfactory level remains an important avenue of exploration. In this work, we introduce MARS, a novel framework for T2I generation that incorporates a specially designed Semantic Vision-Language Integration Expert (SemVIE). This innovative component integrates pre-trained LLMs by independently processing linguistic and visual information—freezing the textual component while fine-tuning the visual component. This methodology preserves the NLP capabilities of LLMs while imbuing them with exceptional visual understanding. Building upon the powerful base of the pre-trained Qwen-7B, MARS stands out with its bilingual generative capabilities corresponding to both English and Chinese language prompts and the capacity for joint image and text generation. The flexibility of this framework lends itself to migration towards any-to-any task adaptability. Furthermore, MARS employs a multi-stage training strategy that first establishes robust image-text alignment through complementary bidirectional tasks and subsequently concentrates on refining the T2I generation process, significantly augmenting text-image synchrony and the granularity of image details. Notably, MARS requires only 9% of the GPU days needed by SD1.5, yet it achieves remarkable results across a variety of benchmarks, illustrating the training efficiency and the potential for swift deployment in various applications