64 research outputs found
Recommended from our members
Effects of HDM2 antagonism on sunitinib resistance, p53 activation, SDF-1 induction, and tumor infiltration by CD11b+/Gr-1+ myeloid derived suppressor cells
Background: The studies reported herein were undertaken to determine if the angiostatic function of p53 could be exploited as an adjunct to VEGF-targeted therapy in the treatment of renal cell carcinoma (RCC). Methods: Nude/beige mice bearing human RCC xenografts were treated with various combinations of sunitinib and the HDM2 antagonist MI-319. Tumors were excised at various time points before and during treatment and analyzed by western blot and IHC for evidence of p53 activation and function. Results: Sunitinib treatment increased p53 levels in RCC xenografts and transiently induced the expression of p21waf1, Noxa, and HDM2, the levels of which subsequently declined to baseline (or undetectable) with the emergence of sunitinib resistance. The development of resistance and the suppression of p53-dependent gene expression temporally correlated with the induction of the p53 antagonist HDMX. The concurrent administration of MI-319 markedly increased the antitumor and anti-angiogenic activities of sunitinib and led to sustained p53-dependent gene expression. It also suppressed the expression of the chemokine SDF-1 (CXCL12) and the influx of CD11b+/Gr-1+ myeloid-derived suppressor cells (MDSC) otherwise induced by sunitinib. Although p53 knockdown markedly reduced the production of the angiostatic peptide endostatin, the production of endostatin was not augmented by MI-319 treatment. Conclusions: The evasion of p53 function (possibly through the expression of HDMX) is an essential element in the development of resistance to VEGF-targeted therapy in RCC. The maintenance of p53 function through the concurrent administration of an HDM2 antagonist is an effective means of delaying or preventing the development of resistance
High dose intermittent sorafenib shows improved efficacy over conventional continuous dose in renal cell carcinoma
<p>Abstract</p> <p>Background</p> <p>Renal cell carcinoma (RCC) responds to agents that inhibit vascular endothelial growth factor (VEGF) pathway. Sorafenib, a multikinase inhibitor of VEGF receptor, is effective at producing tumor responses and delaying median progression free survival in patients with cytokine refractory RCC. However, resistance to therapy develops at a median of 5 months. In an effort to increase efficacy, we studied the effects of increased sorafenib dose and intermittent scheduling in a murine RCC xenograft model.</p> <p>Methods</p> <p>Mice bearing xenografts derived from the 786-O RCC cell line were treated with sorafenib according to multiple doses and schedules: 1) Conventional dose (CD) continuous therapy; 2) high dose (HD) intermittent therapy, 3) CD intermittent therapy and 4) HD continuous therapy. Tumor diameter was measured daily. Microvessel density was assessed after 3 days to determine the early effects of therapy, and tumor perfusion was assessed serially by arterial spin labeled (ASL) MRI at day 0, 3, 7 and 10.</p> <p>Results</p> <p>Tumors that were treated with HD sorafenib exhibited slowed tumor growth as compared to CD using either schedule. HD intermittent therapy was superior to CD continous therapy, even though the total dose of sorafenib was essentially equivalent, and not significantly different than HD continuous therapy. The tumors exposed to HD sorafenib had lower microvessel density than the untreated or the CD groups. ASL MRI showed that tumor perfusion was reduced to a greater extent with the HD sorafenib at day 3 and at all time points thereafter relative to CD therapy. Further the intermittent schedule appeared to maintain RCC sensitivity to sorafenib as determined by changes in tumor perfusion.</p> <p>Conclusions</p> <p>A modification of the sorafenib dosing schedule involving higher dose intermittent treatment appeared to improve its efficacy in this xenograft model relative to conventional dosing. MRI perfusion imaging and histologic analysis suggest that this benefit is related to enhanced and protracted antiangiogenic activity. Thus, better understanding of dosing and schedule issues may lead to improved therapeutic effectiveness of VEGF directed therapy in RCC and possibly other tumors.</p
Recommended from our members
Cox-2 Inhibition Enhances the Activity of Sunitinib in Human Renal Cell Carcinoma Xenografts
Background: Sunitinib (Su), a tyrosine kinase inhibitor of VEGFR, is effective at producing tumour response in clear cell renal cell carcinoma (cRCC), but resistance to therapy is inevitable. As COX-2 is a known mediator of tumour growth, we explored the potential benefit of COX-2 inhibition in combination with VEGFR inhibition in attempts at delaying tumour progression on Su. Methods: COX-2 expression was compared with areas of hypoxia in tumours that progressed on Su vs untreated tumours. Mice bearing human cRCC xenografts were treated with Su and the COX-2 inhibitor, celecoxib, and the effects on tumour growth were assessed. Sequential vs concurrent regimens were compared. Results: COX-2 expression was increased in cRCC xenografts in areas of tumour hypoxia. The combination of Su and celecoxib achieved longer times to tumour progression compared to treatment with either agent alone or to untreated control animals in four models. This effect was seen with concurrent but not with sequential therapy. Conclusion: COX-2 inhibition can extend the effectiveness of VEGFR inhibition. This effect is dependent on the timing of therapy. Clinical trials combining Su and COX-2 inhibitors should be considered as a means delaying time to progression on sunitinib in patients with metastatic cRCC
Recommended from our members
Clinical Profiling of BCL-2 Family Members in the Setting of BRAF Inhibition Offers a Rationale for Targeting De Novo Resistance Using BH3 Mimetics
While response rates to BRAF inhibitiors (BRAFi) are high, disease progression emerges quickly. One strategy to delay the onset of resistance is to target anti-apoptotic proteins such as BCL-2, known to be associated with a poor prognosis. We analyzed BCL-2 family member expression levels of 34 samples from 17 patients collected before and 10 to 14 days after treatment initiation with either vemurafenib or dabrafenib/trametinib combination. The observed changes in mRNA and protein levels with BRAFi treatment led us to hypothesize that combining BRAFi with a BCL-2 inhibitor (the BH3-mimetic navitoclax) would improve outcome. We tested this hypothesis in cell lines and in mice. Pretreatment mRNA levels of BCL-2 negatively correlated with maximal tumor regression. Early increases in mRNA levels were seen in BIM, BCL-XL, BID and BCL2-W, as were decreases in MCL-1 and BCL2A. No significant changes were observed with BCL-2. Using reverse phase protein array (RPPA), significant increases in protein levels were found in BIM and BID. No changes in mRNA or protein correlated with response. Concurrent BRAF (PLX4720) and BCL2 (navitoclax) inhibition synergistically reduced viability in BRAF mutant cell lines and correlated with down-modulation of MCL-1 and BIM induction after PLX4720 treatment. In xenograft models, navitoclax enhanced the efficacy of PLX4720. The combination of a selective BRAF inhibitor with a BH3-mimetic promises to be an important therapeutic strategy capable of enhancing the clinical efficacy of BRAF inhibition in many patients that might otherwise succumb quickly to de novo resistance. Trial Registrations: ClinicalTrials.gov NCT01006980; ClinicalTrials.gov NCT01107418; ClinicalTrials.gov NCT01264380; ClinicalTrials.gov NCT01248936; ClinicalTrials.gov NCT00949702; ClinicalTrials.gov NCT0107217
Recommended from our members
Inhibition of ALK1 signaling with dalantercept combined with VEGFR TKI leads to tumor stasis in renal cell carcinoma
Treatment of metastatic renal cell carcinoma (mRCC) with agents that block signaling through vascular endothelial growth factor receptor 2 (VEGFR2) induces disease regression or stabilization in some patients; however, these responses tend to be short-lived. Therefore, development of combination therapies that can extend the efficacy of VEGFR antagonists in mRCC remains a priority. We studied murine xenograft models of RCC that become refractory to treatment with the VEGFR tyrosine kinase inhibitor (TKI) sunitinib. Dalantercept is a novel antagonist of Activin receptor-like kinase 1 (ALK1)/Bone morphogenetic protein (BMP) 9 signaling. Dalantercept inhibited growth in the murine A498 xenograft model which correlated with hyperdilation of the tumor vasculature and an increase in tumor hypoxia. When combined with sunitinib, dalantercept induced tumor necrosis and prevented tumor regrowth and revascularization typically seen with sunitinib monotherapy in two RCC models. Combination therapy led to significant downregulation of angiogenic genes as well as downregulation of endothelial specific gene expression particularly of the Notch signaling pathway. We demonstrate that simultaneous targeting of molecules that control distinct phases of angiogenesis, such as ALK1 and VEGFR, is a valid strategy for treatment of mRCC. At the molecular level, combination therapy leads to downregulation of Notch signaling
Resistance of Renal Cell Carcinoma to Sorafenib Is Mediated by Potentially Reversible Gene Expression
Purpose: Resistance to antiangiogenic therapy is an important clinical problem. We examined whether resistance occurs at least in part via reversible, physiologic changes in the tumor, or results solely from stable genetic changes in resistant tumor cells. Experimental Design: Mice bearing two human RCC xenografts were treated with sorafenib until they acquired resistance. Resistant 786-O cells were harvested and reimplanted into naïve mice. Mice bearing resistant A498 cells were subjected to a 1 week treatment break. Sorafenib was then again administered to both sets of mice. Tumor growth patterns, gene expression, viability, blood vessel density, and perfusion were serially assessed in treated vs control mice. Results: Despite prior resistance, reimplanted 786-O tumors maintained their ability to stabilize on sorafenib in sequential reimplantation steps. A transcriptome profile of the tumors revealed that the gene expression profile of tumors upon reimplantation reapproximated that of the untreated tumors and was distinct from tumors exhibiting resistance to sorafenib. In A498 tumors, revascularization was noted with resistance and cessation of sorafenib therapy and tumor perfusion was reduced and tumor cell necrosis enhanced with re-exposure to sorafenib. Conclusions: In two RCC cell lines, resistance to sorafenib appears to be reversible. These results support the hypothesis that resistance to VEGF pathway therapy is not solely the result of a permanent genetic change in the tumor or selection of resistant clones, but rather is due to a great extent to reversible changes that likely occur in the tumor and/or its microenvironment
Finishing the euchromatic sequence of the human genome
The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
Large expert-curated database for benchmarking document similarity detection in biomedical literature search
Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe
Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries
Abstract
Background
Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres.
Methods
This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries.
Results
In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia.
Conclusion
This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries
- …